Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A common optical instrument in a laser laboratory is a beam expander. One type of beam expander is shown in FIGURE P 35.29. The parallel rays of a laser beam of width w1 enter from the left.

a. For what lens spacing d does a parallel laser beam exit from the right?

b. What is the width w2 of the exiting laser beam?

Short Answer

Expert verified

a. Lens spacing d does a parallel laser beam exit from the right d=f2+f1.

b. The width w2 of the exiting laser beam isw2=f2f1w2.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Part (a) Step 1: Given Information.

We need to find out d's lens spacing a parallel leaser beam exit from the right.

02

Part (b) Step 2: Diagram explanation.

We see the following from the picture which is given below:

d=f2-f1

If f1<0, which is equivalent to:

d=f2+f1

Here, dis the distance between lens, f1andf2is the focal length of the first and second lens respectively.

03

Part(b) Step 1: Given Information.

We need to find out the width w2leaser beam.

04

Part (b) Step 2: Explanation.

As we know that to find width w2

Triangles a from above picture, we can get the values for w2:

w1f1=w2f2โ‡’w2=f2f1w1

Here, w1andw2is the width of first lens and second lens and f1,f2are the focal length of first and second lens respectively.

So, if is f2>f1and our conclusion show that is w2>w1.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A converging lens with a focal length of 40cmand a diverging lens with a focal length of -40cmare 160cmapart. A 2cmtall object is 60cmin front of the converging lens.

a. Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b. Calculate the image position and height. Compare with your ray-tracing answers in part a.

The Hubble Space Telescope has a mirror diameter of 2.4 m. Suppose the telescope is used to photograph stars near the center of our galaxy, 30,000 light years away, using red light with a wavelength of 650 nm.

a. Whatโ€™s the distance (in km) between two stars that are marginally resolved? The resolution of a reflecting telescope is calculated exactly the same as for a refracting telescope.

b. For comparison, what is this distance as a multiple of the distance of Jupiter from the sun?

A hydrogen discharge lamp emits light with two prominent wavelengths: 656nm(red) and 486nm(blue). The light enters

a flint-glass prism perpendicular to one face and then refracts

through the hypotenuse back into the air. The angle between

these two faces is 35ยฐ.

a. Use Figure 35.18to estimate to ยฑ0.002the index of refraction

of flint glass at these two wavelengths.

b. What is the angle (in degrees) between the red and blue light

as it leaves the prism?

A beam of white light enters a transparent material. Wavelengths for which the index of refraction is n are refracted at angle ฮธ2.

Wavelengths for which the index of refraction is n + ฮดn, where ฮดn<<n, are refracted at angle ฮธ2+ฮดฮธ.

a). Show that the angular separation of the two wavelengths, in radians, is ฮดฮธ=-(ฮดn/n)tanฮธ2.

b). A beam of white light is incident on a piece of glass at 30.0ยฐ. Deep violet light is refracted 0.28ยฐ more than deep red light. The index of refraction for deep red light is known to be 1.552. What is the index of refraction for deep violet light?

A friend lends you the eyepiece of his microscope to use on your own microscope. He claims the spatial resolution of your microscope will be halved, since his eyepiece has the same diameter as yours but twice the magnification. Is his claim valid? Explain.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free