Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two light bulbs are 1.0mapart. from, what distance can these light bulbs be marginally resolved by a small telescope with a 4.0-cm-diameterobjective lens? assume that the lens is diffraction limited andλ=600nm.

Short Answer

Expert verified

Light bulbs be marginally resolved by a small telescope with a 4.0-cm-diameterobjective lens with distanceL=55.5Km.

Step by step solution

01

Given information 

We have given that:
Distance between two bulbs isd=1.0cm,

the diameter islocalid="1648894941098" D=4.0cm,

the wavelength islocalid="1648894948467" λ=600nm600×10-9m.

We need to find the distance.

02

Simplification

Releigh's criteria for angular resolution for circular diameter, D>>h,is:

dθ=1.22λD

dθ=1.22×600×10-90.04

dθ=18×10-6

Now we have to find L from,
dθ=dL

By multiplying both the sides by L,

localid="1648895025315" L×dθ=Llocalid="1648895031802" ×dL

localid="1648895036807" L×dθ=d.

Dividing both the sides by dθ,

localid="1648895043506" L×dθdθ=ddθ

L=ddθ.

Substitute the values in equation,

L=1.018x10-6

L=55.5km.

Here, Lis the distance that these light bulbs can be marginally resolved by a small telescope.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Once dark adapted, the pupil of your eye is approximately 7 mm in diameter. The headlights of an oncoming car are 120 cm apart. If the lens of your eye is diffraction limited, at what distance are the two headlights marginally resolved? Assume a wavelength of 600 nm and that the index of refraction inside the eye is 1.33. (Your eye is not really good enough to resolve headlights at this distance, due both to aberrations in the lens and to the size of the receptors in your retina, but it comes reasonably close.)

An astronomer is trying to observe two distant stars. The stars are marginally resolved when she looks at them through a filter that passes green light with a wavelength near 550 nm. Which of the following actions would improve the resolution? Assume that the resolution is not limited by the atmosphere.

A. Changing the filter to a different wavelength. If so, should she use a shorter or a longer wavelength?

B. Using a telescope with an objective lens of the same diameter but a different focal length. If so, should she select a shorter or a longer focal length?

C. Using a telescope with an objective lens of the same focal length but a different diameter. If so, should she select a larger or a smaller diameter?

D. Using an eyepiece with a different magnification. If so, should she select an eyepiece with more or less magnification?

You’ve been asked to build a telescope from a 2.0xmagnifying lens and a 5.0xmagnifying lens.

a. What is the maximum magnification you can achieve?

b. Which lens should be used as the objective? Explain.

c. What will be the length of your telescope?

High-power lasers are used to cut and weld materials by focusing the laser beam to a very small spot. This is like using a magnifying lens to focus the sun light to a small spot that can burn things. As an engineer you have designed a laser cutting device in which the material to be cut is placed 5.0cmbehind the lens. you have selected a high-power laser with a wavelength of

your calculation indicates that the laser must be focused to a 5.0-μm-diameterspot in order to have sufficient power to make the cut. what is the minimum diameter of lens you must install?

A microscope with a tube length of 180mmachieves a total magnification of 800Xwith a 40Xobjectives and a 20Xeye piece. The microscope is focused for viewing with a related eye. how far is the sample from the objective lens?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free