Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A narrow beam of white light is incident on a sheet of quartz. The beam disperses in the quartz, with red light (l400nm)traveling at an angle of 26.3°with respect to the normal and violet light (l400nm) traveling at 25.7° . The index of refraction of quartz for red light is 1.45. What is the index of refraction of quartz for violet light?

Short Answer

Expert verified

The index of refraction of quartz for violet light is1.48.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given Information.

We have given that:

Red light = (l700nm),

An angel = 26.3°,

Normal violet light (l400nm),

Traveling 25.7°,

Index of refraction 1.45.

We need find the index of refraction of quartz for violet light.

02

Simply.

As we know:

λ1700nm

θ1=26.3°

n2=1.45

λ2400nm

θ2=25.7°

03

Calculation

We need to find n2by using formula:

n1sinθ1=n2sinθ2

1.00sinθ1=1.45sin26.3°

39.97°=θ1

1.00sin39.97°=n2sin25.7°
0.6423=n20.4336
n2=0.64230.4336

n2=1.48

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

FIGURE CP35.50shows a simple zoom lens in which the magnitudes of both focal lengths are f. If the spacing d<f, the image of the converging lens falls on the right side of the diverging lens. Our procedure of letting the image of the first lens act as the object of the second lens will continue to work in this case if we use a negative object distance for the second lens. This is called a virtual object. Consider an object very far to the left (s)of the converging lens. Define the effective focal length as the distance from the midpoint between the lenses to the final image.

a. Show that the effective focal length is

feff=f2-fd+12d2d

b. What is the zoom for a lens that can be adjusted from d=12fto d=14f?

Mars (6800kmdiameter)is viewed through a telescope on a night when it is 1.1×108kmfrom the earth. Its angular size as seen through the eyepiece is 0.50°, the same size as the full moon seen by the naked eye. If the eyepiece focal length is 25mm, how long is the telescope?

A beam of white light enters a transparent material. Wavelengths for which the index of refraction is n are refracted at angle θ2. Wavelengths for which the index of refraction is n+δn, where δn<<n , are refracted at angle θ2+δθ.

a). Show that the angular separation of the two wavelengths, in radians, is δθ=-(δnn)tanθ2

b). A beam of white light is incident on a piece of glass at 30.0°. Deep violet light is refracted 0.28° more than deep red light. The index of refraction for deep red light is known to be 1.552. What is the index of refraction for deep violet light?

Marooned on a desert island and with a lot of time on your hands, you decide to disassemble your glasses to make a crude telescope with which you can scan the horizon for rescuers. Luckily you’re farsighted, and, like most people, your two eyes have different lens prescriptions. Your left eye uses a lens of power +4.5Dand your right eye’s lens is +3.0D. a. Which lens should you use for the objective and which for the eyepiece? Explain.

b. What will be the magnification of your telescope?

c. How far apart should the two lenses be when you focus on distant objects?

A 2.0cm-tall object is 20cmto the left of a lens with a focal length of10cm. A second lens with a focal length of5cmis 30cmto the right of the first lens.

a. Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b. Calculate the image position and height. Compare with your ray-tracing answers in part a.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free