The resolution of a digital camera is limited by two factors:
diffraction by the lens, a limit of any optical system, and the fact
that the sensor is divided into discrete pixels. Consider a typical
point-and-shoot camera that has a 20-mm-focal-length lens and
a sensor with 2.5@mm@wide pixels.
a. First,ass ume an ideal, diffractionless lens. At a distance of
100 m, what is the smallest distance, in cm, between two
point sources of light that the camera can barely resolve? In
answering this question, consider what has to happen on the
sensor to show two image points rather than one. You can use
sโฒ = f because s W f.
b. You can achieve the pixel-limited resolution of part a only if
the diffraction width of each image point is no greater than
1 pixel in diameter. For what lens diameter is the minimum
spot size equal to the width of a pixel? Use 600 nm for the
wavelength of light.
c. What is the f-number of the lens for the diameter you found in
part b? Your answer is a quite realistic value of the f-number
at which a camera transitions from being pixel limited to
being diffraction limited. For f-numbers smaller than this
(larger-diameter apertures), the resolution is limited by the
pixel size and does not change as you change the aperture. For
f-numbers larger than this (smaller-diameter apertures), the
resolution is limited by diffraction, and it gets worse as you
โstop downโ to smaller apertures