Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 6.0mm-diameter microscope objective has a focal length of 9.0mm. What object distance gives a lateral magnification of -40?

Short Answer

Expert verified

The object distance is 4mm.

Step by step solution

01

Given Information.

We have given that:

Diameter= 6.0mm,

focal length=9.0mm .

We need to find object distance which gives a lateral magnification of -40.

02

Equation.

mobj=40

L=160mm

Object is not close to the focal point Sfobj.

Approximation, lateral magnification is given:

mobj=-1fobj.

03

Calculation

L=160mmrepresent microscope tube length.

Let us find the value of fobj.

fobj=Lmobj

fobj=160mm40

fobj=4mm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The Hubble Space Telescope has a mirror diameter of 2.4 m. Suppose the telescope is used to photograph stars near the center of our galaxy, 30,000 light years away, using red light with a wavelength of 650 nm.

a. What’s the distance (in km) between two stars that are marginally resolved? The resolution of a reflecting telescope is calculated exactly the same as for a refracting telescope.

b. For comparison, what is this distance as a multiple of the distance of Jupiter from the sun?

A scientist needs to focus a helium-neon laser beam (λ=633nm)to a 10-μm-diameterspot 8.0cmbehind a lens

(a) what focal-length lens should she use?

(b) what minimum diameter must the lens have?

Marooned on a desert island and with a lot of time on your hands, you decide to disassemble your glasses to make a crude telescope with which you can scan the horizon for rescuers. Luckily you’re farsighted, and, like most people, your two eyes have different lens prescriptions. Your left eye uses a lens of power +4.5Dand your right eye’s lens is +3.0D. a. Which lens should you use for the objective and which for the eyepiece? Explain.

b. What will be the magnification of your telescope?

c. How far apart should the two lenses be when you focus on distant objects?

The lens shown in FIGURE CP35.49 is called an achromatic doublet, meaning that it has no chromatic aberration. The left side is flat, and all other surfaces have radii of curvature R.

a. For parallel light rays coming from the left, show that the effective focal length of this two-lens system is f=R/12n2-n1-12, where localid="1648757054673" n1and n2are, respectively, the indices of refraction of the diverging and the converging lenses. Don’t forget to make the thin-lens approximation.

b. Because of dispersion, either lens alone would focus red rays and blue rays at different points. Define n1 and n2 as nblue-nred for the two lenses. What value of the ratio n1/n2makes fblue=fredfor the two-lens system? That is, the two-lens system does not exhibit chromatic aberration.

c. Indices of refraction for two types of glass are given in the table. To make an achromatic doublet, which glass should you use for the converging lens and which for the diverging lens? Explain

nblue nred

Crown glass 1.525 1.517

Flint glass 1.632 1.616

d. What value of R gives a focal length of 10.0cm?

| Marooned on a desert island and with a lot of time on your hands, you decide to disassemble your glasses to make a crude telescope with which you can scan the horizon for rescuers. Luckily you’re farsighted, and, like most people, your two eyes have different lens prescriptions. Your left eye uses a lens of power +4.5 D, and your right eye’s lens is +3.0 D. a. Which lens should you use for the objective and which for the eyepiece? Explain.

b. What will be the magnification of your telescope?

c. How far apart should the two lenses be when you focus on distant objects?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free