Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A standardized biological microscope has an 8.0mmfocal length objective. what focal-length eyepiece should be used to achieve a total magnification of100x?

Short Answer

Expert verified

5cm the focal-length eyepiece should be used to achieve a total magnification of100x.

Step by step solution

01

Given Information

We need to find out the focal length of the eyepiece.

02

Simplification

L=160mm

role="math" localid="1648728454541" M=100

fobj=8mm

As we know that the total magnification in the microscope is:

M=-Lfobj×25feye

100=1608×25feye

feye=20×25100

feye=500100

feye=5cm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Mars (6800kmdiameter)is viewed through a telescope on a night when it is 1.1×108kmfrom the earth. Its angular size as seen through the eyepiece is 0.50°, the same size as the full moon seen by the naked eye. If the eyepiece focal length is 25mm, how long is the telescope?

A 2.0cm-tall object is 20cmto the left of a lens with a focal length of10cm. A second lens with a focal length of5cmis 30cmto the right of the first lens.

a. Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b. Calculate the image position and height. Compare with your ray-tracing answers in part a.

Alpha Centauri, the nearest star to our solar system is 4.3light years away. assume that alpha centauri has a planet with an advanced civilization. professor Dhg, at the planet's Astronomical Institute, wants to build a telescope with which he can find out whether any planets are orbiting our sun.

(a). What is the minimum diameter for an objectives lens that will just barely resolve Jupiter and the sun? The radius of Jupiter's orbit is 780millionkm.Assume λ=600nm.

(b). Building a telescope of the necessary size does not appear to be a major problem. What practical difficulties might prevent professor Dhg's experiment from succeeding?

A red card is illuminated by red light. What color will the card appear? What if it’s illuminated by blue light?

Modern microscopes are more likely to use a camera than human viewing. This is accomplished by replacing the eyepiece in Figure 35.14 with a photo-ocular that focuses the image of the objective to a real image on the sensor of a digital camera. A typical sensor is 22.5 mm wide and consists of 5625 4.0@mm@ wide pixels. Suppose a microscopist pairs a 40* objective with a 2.5* photo-ocular.

a. What is the field of view? That is, what width on the microscope stage, in mm, fills the sensor?

b. The photo of a cell is 120 pixels in diameter. What is the cell’s actual diameter, in mm?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free