Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A microscope has a 20cmtube length. What focal-length objective will give total magnification localid="1649845070556" 500×when used with an eyepiece having a focal length 5.0cm?

Short Answer

Expert verified

The objective will give a total magnification 500×is 0.2cm.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given Information.

We have given that:

Tube lengthL=20cm,

Magnification localid="1649845198764" M=500×

Focal length feye=5cm

We need to find the focal length.

02

Simplification.

As we know a total magnification microscope:

M=-Lfobj×25feye500=20fobj×255500=20fobj×5500=100fobjfobj=100500fobj=0.2cm

Here fobjis the focal length of an object and Mis magnification.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The resolution of a digital camera is limited by two factors:

diffraction by the lens, a limit of any optical system, and the fact

that the sensor is divided into discrete pixels. Consider a typical

point-and-shoot camera that has a 20-mm-focal-length lens and

a sensor with 2.5@mm@wide pixels.

a. First,ass ume an ideal, diffractionless lens. At a distance of

100 m, what is the smallest distance, in cm, between two

point sources of light that the camera can barely resolve? In

answering this question, consider what has to happen on the

sensor to show two image points rather than one. You can use

s′ = f because s W f.

b. You can achieve the pixel-limited resolution of part a only if

the diffraction width of each image point is no greater than

1 pixel in diameter. For what lens diameter is the minimum

spot size equal to the width of a pixel? Use 600 nm for the

wavelength of light.

c. What is the f-number of the lens for the diameter you found in

part b? Your answer is a quite realistic value of the f-number

at which a camera transitions from being pixel limited to

being diffraction limited. For f-numbers smaller than this

(larger-diameter apertures), the resolution is limited by the

pixel size and does not change as you change the aperture. For

f-numbers larger than this (smaller-diameter apertures), the

resolution is limited by diffraction, and it gets worse as you

“stop down” to smaller apertures

Ellen wears eyeglasses with the prescription-1.0D.

a. What eye condition does Ellen have?

b. What is her far point without the glasses?

A common optical instrument in a laser laboratory is a beam expander. One type of beam expander is shown in FIGURE P 35.29. The parallel rays of a laser beam of width w1 enter from the left.

a. For what lens spacing d does a parallel laser beam exit from the right?

b. What is the width w2 of the exiting laser beam?

A 2.0-tall object is 20cmto the left of a lens with a focal length of 10cm. A second lens with a focal length of -5cm is 30cm to the right of the first lens.

a. Use ray tracing to find the position and height of the image. Do this accurately using a ruler or paper with a grid, then make measurements on your diagram.

b. Calculate the image position and height. Compare with your ray-tracing answers in part a.

A microscope with a tube length of 180mmachieves a total magnification of 800Xwith a 40Xobjectives and a 20Xeye piece. The microscope is focused for viewing with a related eye. how far is the sample from the objective lens?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free