Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A very smart 3-year-old child is given a wagon for her birthday. She refuses to use it. “After all,” she says, “Newton’s third law says that no matter how hard I pull, the wagon will exert an equal but opposite force on me. So I will never be able to get it to move forward.” What would you say to her in reply?

Short Answer

Expert verified

Yes, the wagon will move forward without any hinderance.

Step by step solution

01

Given information

A very smart 3-year-old child is given a wagon for her birthday.

02

Explanation

According to Newton's third law of motion, every action has an equal and opposite reaction.

So, you can tell your child that when you push the wagon, it applies equal force on your hand in the opposite direction . This force acts on the hand . Force applied on the wagon will show its effect and wagon will move forward without any hinderance provided there is absence of frictional force.

03

Final answer

The force that acts on hand in backward direction will be balanced by frictional force of the ground on the body . So hand will not move in backward direction. Only wagon will move forward as you push the wagon .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The 2000kgcable car shown in FIGURE P7.42descends a 200-m-high hill. In addition to its brakes, the cable car controls its speed by pulling an1800kg counterweight up the other side of the hill. The rolling friction of both the cable car and the counterweight are negligible.

a. How much braking force does the cable car need to descend at constant speed?

b. One day the brakes fail just as the cable car leaves the top on its downward journey. What is the runaway car’s speed at the bottom of the hill?

Will hanging a magnet in front of the iron cart in the given figure make it go? Explain.

A weightlifter stands up at constant speed from a squatting position while holding a heavy barbell across his shoulders.

a. Draw an interaction diagram.

b. Identify the “system” on your interaction diagram.

c. Draw a free-body diagram for each object in the system. Use

dashed lines to connect members of an action/reaction pair.

While driving to work last year, I was holding my coffee mug in my left hand while changing the CD with my right hand. Then the cell phone rang, so I placed the mug on the flat part of my dashboard. Then, believe it or not, a deer ran out of the woods and on to the road right in front of me. Fortunately, my reaction time was zero, and I was able to stop from a speed of 20m/s in a mere 50m, just barely avoiding the deer. Later tests revealed that the static and kinetic coefficients of friction of the coffee mug on the dash are 0.50 and 0.30, respectively; the coffee and mug had a mass of 0.50kg; and the mass of the deer was 120kg. Did my coffee mug slide?

The 1.0kgblock in FIGURE EX7.24is tied to the wall with a rope. It sits on top of the 2.0kgblock. The lower block is pulled to the right with a tension force of 20N. The coefficient of kinetic friction at both the lower and upper surfaces of the 2.0kgblock is μk=0.40

a. What is the tension in the rope attached to the wall?

b. What is the acceleration of the 2.0kgblock?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free