Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The gravitational force of a star on orbiting planet 1 is F1. Planet 2, which is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force F2. What is the ratio F1/F2?

Short Answer

Expert verified

The ratio F1/F2 =2

Step by step solution

01

Given Information

The gravitational force of a star on orbiting planet 1 is F1.

Planet 2, is twice as massive as planet 1 and orbits at twice the distance from the star, experiences gravitational force F2.

02

Explanation

The Gravitation force is given as

F=Gm1m2r2

First find the gravitational force on each planet and get the ratio.

Gravitational force on planet 1

F1=G×M1×M1R12....................(1)

Gravitational force on planet 2. Substitute M2= 2 M1 and R2=2R1

role="math" localid="1649250783330" F2=G×M1×(2M1)(2R1)2....................(2)

Now divide equation (1) by (2), we get

F1F2=2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

shows a particle of mass m at distance xfrom the center of a very thin cylinder of mass Mand length L. The particle is outside the cylinder, so x>L/2.

a. Calculate the gravitational potential energy of these two masses.

b. Use what you know about the relationship between force and potential energy to find the magnitude of the gravitational force on mwhen it is at position x.

A 20kgsphere is at the origin and a 10kgsphere is at x=20cm.At what position on the x-axis could you place a small mass such that the net gravitational force on it due to the spheres is zero?

In Problems 64 through 66 you are given the equation(s) used to solve a problem. For each of these, you are to
a. Write a realistic problem for which this is the correct equation(s).
b. Draw a pictorial representation.
c. Finish the solution of the problem.

65.6.67×10-11Nm2/kg25.98×1024kg(1000kg)r2=(1000kg)(1997m/s)2r

FIGURE P13.57 shows two planets of mass m orbiting a star of mass M. The planets are in the same orbit, with radius r, but are always at opposite ends of a diameter. Find an exact expression for the orbital period T. Hint: Each planet feels two forces.

Large stars can explode as they finish burning their nuclear fuel, causing a supernova. The explosion blows away the outer layers of the star. According to Newton’s third law, the forces that
push the outer layers away have reaction forces that are inwardly directed on the core of the star. These forces compress the core and can cause the core to undergo a gravitational collapse. The
gravitational forces keep pulling all the matter together tighter and tighter, crushing atoms out of existence. Under these extreme conditions, a proton and an electron can be squeezed together to
form a neutron. If the collapse is halted when the neutrons all come into contact with each other, the result is an object called a neutron star, an entire star consisting of solid nuclear matter. Many neutron stars rotate about their axis with a period of ≈ 1 s and, as they do so, send out a pulse of electromagnetic waves once a second. These stars were discovered in the 1960s and are called pulsars.
a. Consider a neutron star with a mass equal to the sun, a radius of 10 km, and a rotation period of 1.0 s. What is the speed of a point on the equator of the star?
b. What is g at the surface of this neutron star?
c. A stationary 1.0 kg mass has a weight on earth of 9.8 N. What would be its weight on the star?
d. How many revolutions per minute are made by a satellite orbiting 1.0 km above the surface?
e. What is the radius of a geosynchronous orbit?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free