Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

There is a cw induced current in the conducting loop shown in FIGURE EX30.9. Is the magnetic field inside the loop increasing in strength, decreasing in strength, or steady?

Short Answer

Expert verified

The magnetic field within the loop is dwindling.

Step by step solution

01

 Step1: Lenz's law is defined as follows:

Lenz's law, named after Emil Lenz, is based on the principle of conservation of energy and Newton's third law. It is the most fundamental method for determining the direction of the induced current. It claims that the direction of the induced current is always such that it opposes the change in the circuit or magnetic field that causes it.

02

 Step2:Applying magnetic field

The induced magnetic field is directed toward the page because the induced current is CW. The applied magnetic field is being absorbed by the page. As a result, when the induced magnetic field is directed in the same direction as the applied magnetic field, the magnetic flux and thus the magnetic field strength decrease.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

FIGURE shows a bar magnet being pushed toward a conducting loop from below, along the axis of the loop.

a. What is the current direction in the loop? Explain.

b. Is there a magnetic force on the loop? If so, in which direction? Explain.

Hint: A current loop is a magnetic dipole.

c. Is there a force on the magnet? If so, in which direction?

5.0ฮผsafter the switch of FIGURE is moved from ato b, the magnetic energy stored in the inductor has decreased by half. What is the value of the inductance L?

56. II Your camping buddy has an idea for a light to go inside your CALC tent. He happens to have a powerful (and heavy!) horseshoe magnet that he bought at a surplus store. This magnet creates a0.20T field between two pole tips 10cmapart. His idea is to build the hand-cranked generator shown in FIGURE P30.56. He thinks you can make enough current to fully light a1.0ฮฉlightbulb rated at 4.0W. That's not super bright, but it should be plenty of light for routine activities in the tent.

a. Find an expression for the induced current as a function of time if you turn the crank at frequency f Assume that the semicircle is at its highest point at t=0s.

b. With what frequency will you have to turn the crank tor the maximum current to fully light the bulb? Is this feasible?

21. Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength1.5m from the center of the circle is4.0mV/m . At what rate is the magnetic field changing?

An electric generator has an 18 -cm-diameter, 120 -turn coil that rotates at 60 Hzin a uniform magnetic field that is perpendicular to the rotation axis. What magnetic field strength is needed to generate a peak voltage of 170V?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free