Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

At , the current in thet=0scircuit in FIGURE EX30.35is I0. At what time is the current 12I0

Short Answer

Expert verified

Time for current12I0is173μs.

Step by step solution

01

Formula for current and time constant

Current decays across the inductor in a LRcircuit.

I=Ioe-t/τ

localid="1648833013057" τis a constant in time.

Furthermore, the temporal constant is given by

τ=LR

02

Calculation for time for current12I0

As it stands,

Req=300Ω

L=75×10-3H

all values should be substituted,

τ=LR=75×10-3300Ω

I=Io2Then,

I=Ioe-t/τ

Io2=Ioe-t/250μs

ln0.5=-t250μs

t=173μs

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let's look at the details of eddy-current braking. A square CALC loop, lengthlon each side, is shot with velocityv0into a uniform magnetic field localid="1648921142252" B. The field is perpendicular to the plane of the loop. The loop has mass localid="1648921150406" mand resistancelocalid="1648921154874" R,and it enters the field atlocalid="1648921174281" t=0s. Assume that the loop is moving to the right along thelocalid="1648921181007" x-axis and that the field begins atlocalid="1648921198444" x=0m.

a. Find an expression for the loop's velocity as a function of time as it enters the magnetic field. You can ignore gravity, and you can assume that the back edge of the loop has not entered the field.

b. Calculate and draw a graph oflocalid="1648921211473" vover the intervallocalid="1648921223129" 0st0.04sfor the case thatlocalid="1648816410574" width="87">v0=10m/s,localid="1648921234041" l=10cm,localid="1648921244487" m=1.0g,localid="1648921254639" R=0.0010Ω,and localid="1648921264943" B=0.10T. The back edge of the loop does not reach the field during this time interval.

The current in the solenoid of FIGURE EX30.12 is increasing. The solenoid is surrounded by a conducting loop. Is there a current in the loop? If so, is the loop current cw or ccw?

Your camping buddy has an idea for a light to go inside your tent. He happens to have a powerful and heavy horseshoe magnet that he bought at a surplus store. This magnet creates a 0.20Tfield between two pole tips 10cmapart. His idea is to build the hand-cranked generator shown in FIGURE .He thinks you can make enough current to fully light a 1.0lightbulb rated at 4.0W. That’s not super bright, but it should be plenty of light for routine activities in the tent.

a. Find an expression for the induced current as a function of time if you turn the crank at frequency f. Assume that the semicircle is at its highest point at t=0s.

b. With what frequency will you have to turn the crank for the maximum current to fully light the bulb? Is this feasible?

A bar magnet is pushed toward a loop of wire as shown in FIGURE Q30.7. Is there a current in the loop? If so, in which direction? If not, why not?

67. II FIGURE P30.67 shows the potential difference across a potential difference across a 50mHinductor. The current through the inductor at t=0sis 0.20A. Draw a graph showing the current through the inductor from t=0sto t=40ms

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free