Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An MRI machine needs to detect signals that oscillate at very high frequencies. It does so with an LC circuit containing a 15 mH coil. To what value should the capacitance be set to detect a 450 MHz signal?

Short Answer

Expert verified

The value of capacitance is 8.34×10-18F.

Step by step solution

01

Given information

We have given that, an MRI machine oscillate at very high frequencies. It has inductance of 15 mH and frequency of signal is 450 MHz.

02

Step 1.

The formula to calculate the capacitance is :

C=1L(2πf)2

Here, C = Capacitance

L = Inductance

f = Frequency

03

Step 2.

Substituting the values in the formula :

C=1(15×10-3H)(2π×450×106Hz)2

C=8.34×10-18F.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A small, 2.0-mm-diameter circular loop with R=0.020Ωis at the center of a large 100-mm-diameter circular loop. Both loops lie in the same plane. The current in the outer loop changes from +1.0Ato -1.0Ain 0.10s. What is the induced current in the inner loop?

Experiments to study vision often need to track the movements BI0 of a subject's eye. One way of doing so is to have the subject sit in a magnetic field while wearing special contact lenses with a coil of very fine wire circling the edge. A current is induced in the coil each time the subject rotates his eye. Consider the experiment of FIGURE P30.60 in which a 20 -turn, 6.0-mm-diameter coil of wire circles the subject's cornea while a 1.0 T magnetic field is directed as shown. The subject begins by looking straight ahead. What emfis induced in the coil if the subject shifts his gaze by 5in0.20s?

21. Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength1.5m from the center of the circle is4.0mV/m . At what rate is the magnetic field changing?

11. a. Can you tell which of the inductors in FIGURE Q30.11 has the larger current through it? If so, which one? Explain.

b. Can you tell through which inductor the current is changing more rapidly? If so, which one? Explain.

c. If the current enters the inductor from the bottom, can you tell if the current is increasing, decreasing, or staying the same? If so, which? Explain.

FIGURE Q30.11

FIGURE shows a U-shaped conducting rail that is oriented vertically in a horizontal magnetic field. The rail has no electric resistance and does not move. A slide wire with mass mand resistance Rcan slide up and down without friction while maintaining electrical contact with the rail. The slide wire is released from rest.

a. Show that the slide wire reaches a terminal speed vterm, and find an expression forvterm .

b. Determine the value of vtermif l=20cm,m=10g,R=0.10Ωand B=0.50T

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free