Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You can swing a ball on a string in a vertical circle if you swing it fast enough. But if you swing too slowly, the string goes slack as the ball nears the top. Explain why there’s a minimum speed to keep the ball moving in a circle.

Short Answer

Expert verified

At the top of the swing both gravity and tension pull down, therefore if the ball isn't traveling as fast as the force is trying to keep it going (in circular motion) then it will fall.

Step by step solution

01

Given information

You can swing a ball on a string in a vertical circle if you swing it fast enough. But if you swing too slowly, the string goes slack as the ball nears the top.

02

Explanation

At the top of the swing both gravity and tension pull down, therefore if the ball isn't traveling as fast as the force is trying to keep it going (in circular motion) then it will fall. Basically if gravity were less, then you could swing a vertical string slower and slower.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In an amusement park ride called The Roundup, passengers stand inside a 16-m-diameter rotating ring. After the ring has acquired sufficient speed, it tilts into a vertical plane, as shown in FIGURE P8.51.
a. Suppose the ring rotates once every 4.5 s. If a rider’s mass is 55 kg, with how much force does the ring push on her at the top of the ride? At the bottom?
b. What is the longest rotation period of the wheel that will prevent the riders from falling off at the top?

The 10 mg bead in FIGURE P8.48 is free to slide on a frictionless wire loop. The loop rotates about a vertical axis with angular velocity ω. If ω is less than some critical value ωc the bead sits at the bottom of the spinning loop. When ω > ωc the bead moves out to some angle θ

  1. What is ωc in rpm for the loop shown in the figure?
  2. At what value of ωc in rpm is θ=30o

A 2.0 kg ball swings in a vertical circle on the end of an 80-cm-long string. The tension in the string is 20 N when its angle from the highest point on the circle is θ = 30­o.
a. What is the ball’s speed when θ = 30o­?
b. What are the magnitude and direction of the ball’s acceleration when θ = 30o­?

A toy train rolls around a horizontal 1.0-m-diameter track. The coefficient of rolling friction is 0.10. How long does it take the train to stop if it’s released with an angular speed of 30 rpm?

Two wires are tied to the 300 g sphere shown in FIGURE P8.46. The sphere revolves in a horizontal circle at a constant speed of 7.5 m/s. What is the tension in each of the wires?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free