Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose the moon were held in its orbit not by gravity but by a massless cable attached to the center of the earth. What would be the tension in the cable? Use the table of astronomical data inside the back cover of the book

Short Answer

Expert verified

The tension in the cable isFc=2.01×1020N.

Step by step solution

01

Given Information

From the table on the back cover of book Astronomical Data we can find that the value of the moon we needed.

mmoon=7.36×1022kgdfrom earth=r=3.84×108kmperiod=t=27.3days=2,358,720s
02

Explanation

Fc=mv2rFc=m(rω)2rFc=mrω2Fc=mr2πt2Fc=4π2mrt2

Fc=4π27.36×1022kg3.84×108km(2,358,720s)2

Fc=2.01×10N
03

Final Answer

The tension in the cable isFc=2.01×10N.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

FIGURE P8.54 shows a small block of mass m sliding around the inside of an L-shaped track of radius r. The bottom of the track is frictionless; the coefficient of kinetic friction between the block and the wall of the track is µk,The block's speed is vo at to =0 Find an expression for the block's speed at a later time t.

A500gball moves in a vertical circle on a 102-cm-long string. If the speed at the top is 4.0m/s, then the speed at the bottom will be 7.5m/s.

a. What is the gravitational force acting on the ball?

b. What is the tension in the string when the ball is at the top? c. What is the tension in the string when the ball is at the bottom?

A 4.4-cm-diameter, 24 g plastic ball is attached to a 1.2-m-long string and swung in a vertical circle. The ball’s speed is 6.1 m/s at the point where it is moving straight up. What is the magnitude of the net force on the ball? Air resistance is not negligible.

A 4.4-cm-diameter, 24 g plastic ball is attached to a 1.2-m-long string and swung in a vertical circle. The ball’s speed is 6.1 m/s at the point where it is moving straight up. What is the magnitude of the net force on the ball? Air resistance is not negligible.

In Problems 64 and 65 you are given the equation used to solve a problem. For each of these, you are to
a. Write a realistic problem for which this is the correct equation. Be sure that the answer your problem requests is consistent with the equation given.
b. Finish the solution of the problem.
65. (1500 kg)(9.8 m/s2) - 11,760 N = (1500 kg) v2/(200 m)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free