Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A toy train rolls around a horizontal 1.0-m-diameter track. The coefficient of rolling friction is 0.10. How long does it take the train to stop if it’s released with an angular speed of 30 rpm?

Short Answer

Expert verified

The train will take 1.61sto stop if it’s released with an angular speed of 30rpm.

Step by step solution

01

Given Information

A toy train rolls around a horizontal 1.0-m-diameter track. The coefficient of rolling friction is 0.10.

02

Explanation

According to the information

Initial speed μ=30rpm

Diameter d=1.0m

Radius R=12=0.5

Convert rpm to rad/s as follow:

(30rpm)=30(2π)60

=3.15rad/s

The time take is expressed as follow:

T=3.151.96rad/s2

T=1.61s

03

Final Answer

The train will take 1.61sto stop if it’s released with an angular speed of30rpm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The father of Example 8.2 stands at the summit of a conical hill as he spins his 20 kg child around on a 5.0 kg cart with a 2.0-m-long rope. The sides of the hill are inclined at 20o­. He
again keeps the rope parallel to the ground, and friction is negligible. What rope tension will allow the cart to spin with the same 14 rpm it had in the example?

While at the county fair, you decide to ride the Ferris wheel. Having eaten too many candy apples and elephant ears, you find the motion somewhat unpleasant. To take your mind off your stomach, you wonder about the motion of the ride. You estimate the radius of the big wheel to be 15m, and you use your watch to find that each loop around takes 25s.

a. What are your speed and the magnitude of your acceleration?

b. What is the ratio of your weight at the top of the ride to your weight while standing on the ground?

c. What is the ratio of your weight at the bottom of the ride to your weight while standing on the ground?

It is proposed that future space stations create an artificial gravity by rotating. Suppose a space station is constructed as a 1000-mdiameter cylinder that rotates about its axis. The inside surface is the deck of the space station. What rotation period will provide “normal” gravity?

In the Bohr model of the hydrogen atom, an electron (mass m=9.1×10-31kg)orbits a proton at a distance of 5.3×10-11m. The proton pulls on the electron with an electric force of8.2×10-8N. How many revolutions per second does the electron make?

Three cars are driving at25m/salong the road shown in FIGURE EX8.30. Car B is at the bottom of a hill and car C is at the top. Both hills have a 200m radius of curvature. Suppose each car suddenly brakes hard and starts to skid. What is the tangential acceleration (i.e., the acceleration parallel to the road) of each car? Assume localid="1647757037587" μK=1.0.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free