Chapter 8: Dynamics II: Motion in a Plane
Q. 49
In an old-fashioned amusement park ride, passengers stand inside a 5.0-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the passengers are standing suddenly drops away! If all goes well, the passengers will “stick” to the wall and not slide. Clothing has a static coefficient of friction against steel in the range 0.60 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. A sign next to the entrance says “No children under 30 kg allowed.” What is the minimum angular speed, in rpm, for which the ride is safe?
Q.5
shows two balls of equal mass moving in vertical circles. Is the tension in string greater than, less than, or equal to the tension in string if the balls travel over the top of the circle (a) with equal speed and (b) with equal angular velocity?
Q.5
A car drives around a flat -diameter circular track at . What are the magnitude and direction of the net force on the car? What causes this force?
Q. 50
The ultracentrifuge is an important tool for separating and analyzing proteins. Because of the enormous centripetal accelerations, the centrifuge must be carefully balanced, with each sample matched by a sample of identical mass on the opposite side. Any difference in the masses of opposing samples creates a net force on the shaft of the rotor, potentially leading to a catastrophic failure of the apparatus. Suppose a scientist makes a slight error in sample preparation and one sample has a mass 10 mg larger than the opposing sample. If the samples are 12 cm from the axis of the rotor and the ultracentrifuge spins at 70,000 rpm, what is the magnitude of the net force on the rotor due to the unbalanced samples?
Q. 51
In an amusement park ride called The Roundup, passengers stand inside a 16-m-diameter rotating ring. After the ring has acquired sufficient speed, it tilts into a vertical plane, as shown in FIGURE P8.51.
a. Suppose the ring rotates once every 4.5 s. If a rider’s mass is 55 kg, with how much force does the ring push on her at the top of the ride? At the bottom?
b. What is the longest rotation period of the wheel that will prevent the riders from falling off at the top?
Q. 52
Suppose you swing a ball of mass m in a vertical circle on a string of length L. As you probably know from experience, there is a minimum angular velocity ωmin you must maintain if you want the ball to complete the full circle without the string going slack at the top.
a. Find an expression for ωmin
b. Evaluateωminin rpm for a 65 g ball tied to a 1.0-m-long string.
Q. 53
30 g ball rolls around a 40-cm-diameter L-shaped track, shown in FIGURE P8.53, at 60 rpm. What is the magnitude of the net force that the track exerts on the ball? Rolling friction can be neglected.
Hint: The track exerts more than one force on the ball
Q. 54
FIGURE P8.54 shows a small block of mass m sliding around the inside of an L-shaped track of radius r. The bottom of the track is frictionless; the coefficient of kinetic friction between the block and the wall of the track is µk,The block's speed is vo at to =0 Find an expression for the block's speed at a later time t.
Q. 55
The physics of circular motion sets an upper limit to the speed of human walking. (If you need to go faster, your gait changes from a walk to a run.) If you take a few steps and watch
what’s happening, you’ll see that your body pivots in circular motion over your forward foot as you bring your rear foot forward for the next step. As you do so, the normal force of the
ground on your foot decreases and your body tries to “lift off” from the ground.
a. A person’s center of mass is very near the hips, at the top of the legs. Model a person as a particle of mass m at the top of a leg of length L. Find an expression for the person’s maximum walking speed vmax.
b. Evaluate your expression for the maximum walking speed of a 70 kg person with a typical leg length of 70 cm. Give your answer in both m/s and mph, then comment, based on your
experience, as to whether this is a reasonable result. A “normal” walking speed is about 3 mph.
Q. 56
A 100 g ball on a 60-cm-long string is swung in a vertical circle about a point 200 cm above the floor. The tension in the string when the ball is at the very bottom of the circle is 5.0 N. A
very sharp knife is suddenly inserted, as shown in FIGURE P8.56,to cut the string directly below the point of support. How far to the right of where the string was cut does the ball hit the floor?