Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Chapter 6: Dynamics I: Motion Along a Line

Q.42

Page 156

Seat belts and air bags save lives by reducing the forces exerted on the driver and passengers in an automobile collision. Cars are designed with a “crumple zone” in the front of the car. In the event of an impact, the passenger compartment decelerates over a distance of about 1 m as the front of the car crumples. An occupant restrained by seat belts and air bags decelerates with the car. By contrast, an unrestrained occupant keeps moving forward with no loss of speed (Newton’s first law!) until hitting the dashboard or windshield. These are unyielding surfaces, and the unfortunate occupant then decelerates over a distance of only about 5 mm.

a. A 60 kg person is in a head-on collision. The car’s speed at impact is 15 m/s. Estimate the net force on the person if he or she is wearing a seat belt and if the air bag deploys.

b. Estimate the net force that ultimately stops the person if he or she is not restrained by a seat belt or air bag.

Q. 42

Page 156

Seat belts and air bags save lives by reducing the forces exerted on the driver and passengers in an automobile collision. Cars are designed with a “crumple zone” in the front of the car. In the event of an impact, the passenger compartment decelerates over a distance of about 1mas the front of the car crumples. An occupant restrained by seat belts and air bags decelerates with the car. By contrast, an unrestrained occupant keeps moving forward with no loss of speed (Newton’s first law!) until hitting the dashboard or windshield. These are unyielding surfaces, and the unfortunate occupant then decelerates over a distance of only about 5mm. a. A 60kgperson is in a head-on collision. The car’s speed at impact is 15m/s. Estimate the net force on the person if he or she is wearing a seat belt and if the air bag deploys.

b. Estimate the net force that ultimately stops the person if he or she is not restrained by a seat belt or air bag

Q. 43

Page 156

The piston of a machine exerts a constant force on a ball as it moves horizontally through a distance of 15cm. You use a motion detector to measure the speed of five different balls as they come off the piston; the data are shown in the table. Use theory to find two quantities that, when graphed, should give a straight line. Then use the graph to find the size of the piston’s force.

Q. 44

Page 156

Compressed air is used to fire a 50 g ball vertically upward from a 1.0 m-tall tube. The air exerts an upward force of 2N on the ball as long as it is in the tube. How high does the ball go above the top of the tube?

Q. 45

Page 156

a. A rocket of mass mis launched straight up with thrust Fthrust. Find an expression for the rocket’s speed at height hif air resistance is neglected.

b. The motor of a 350g model rocket generates9.5 N thrust. If air resistance can be neglected, what will be the rocket’s speed as it reaches a height of 85 m?

Q. 46

Page 156

A rifle with a barrel length of 60cm fires a 10g bullet with a horizontal speed of 400m/s. The bullet strikes a block of wood and penetrates to a depth of 12cm.

a. What resistive force (assumed to be constant) does the wood exert on the bullet?

b. How long does it take the bullet to come to rest?

Q. 47

Page 156

A truck with a heavy load has a total mass of 7500kg. It is climbing a 15°incline at a steady 15m/s when, unfortunately, the poorly secured load falls off! Immediately after losing the load, the truck begins to accelerate at 1.5 m/s2. What was the mass of the load? Ignore rolling friction.

Q. 48

Page 156

An object of mass m is at rest at the top of a smooth slope of height hand lengthL. The coefficient of kinetic friction between the object and the surface, μk, is small enough that the object will slide down the slope after being given a very small push to get it started. Find an expression for the object’s speed at the bottom of the slope.

Q. 49

Page 156

Sam, whose mass is 75kg, takes off across level snow on his jet-powered skis. The skis have a thrust of 200N and a coefficient of kinetic friction on snow of 0.10. Unfortunately, the skis run out of fuel after only10 s.

a. What is Sam’s top speed?

b. How far has Sam traveled when he finally coasts to a stop?

Q.5

Page 153

An elevator, hanging from a single cable, moves upward at constant speed. Friction and air resistance are negligible. Is the tension in the cable greater than, less than, or equal to the gravitational force on the elevator? Explain. Include a free-body diagram as part of your explanation.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks