Chapter 8: Problem 32
An object moves in the \(x y\) plane such that \(x=R \cos \omega t\) and \(y=R \sin \omega t\). Here \(x\) and \(y\) are the coordinates of the object, is the time, and \(R\) and \(\omega\) are constants. (a) Eliminate \(t\) between these equations to find the equation of the curve in which the object moves. What is this curve? What is the meaning of the constant \(\omega ?(b)\) Differentiate the equations for \(x\) and \(y\) with respect to the time to find the \(x\) and \(y\) components of the velocity of the body, \(v_{x}\) and \(v_{y}\). Combine \(v_{x}\) and \(v_{y}\) to find the magnitude and direction of \(v .\) Describe the motion of the object. ( \(c\) ) Differentiate \(v_{x}\) and \(v_{y}\) with respect to the time to obtain the magnitude and direction of the resultant acceleration.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.