Chapter 8: Problem 10
A planet \(P\) revolves around the Sun in a circular orbit, with the Sun at the center, which is coplanar with and concentric to the circular orbit of Earth \(E\) around the Sun. \(P\) and \(E\) revolve in the same direction. The times required for the revolution of \(P\) and \(E\) around the Sun are \(T_{P}\) and \(T_{E}\). Let \(T_{S}\) be the time required for \(P\) to make one revolution around the Sun relative to \(E\) : show that \(1 / T_{S}=1 / T_{E}-1 / T_{P}\). Assume \(T_{P}>T_{E}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.