Chapter 22: Problem 4
(a) Consider \(1.00 \mathrm{~mol}\) of an ideal gas at \(285 \mathrm{~K}\) and \(1.00 \mathrm{~atm}\) pressure. Imagine that the molecules are for the most part evenly spaced at the centers of identical cubes. Using Avogadro's constant and taking the diameter of a molecule to be \(3.00 \times 10^{-8} \mathrm{~cm}\), find the length of an edge of such a cube and calculate the ratio of this length to the diameter of a molecule. The edge length is an estimate of the distance between molecules in the gas. (b) Now consider a mole of water having a volume of \(18 \mathrm{~cm}^{3}\). Again imagine the molecules to be evenly spaced at the centers of identical cubes and repeat the calculation in \((a)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.