Chapter 13: Problem 20
Let the total energy of a system of \(N\) particles be measured in an arbitrary frame of reference, such that \(K=\Sigma \frac{1}{2} m_{n} v_{n}^{2} .\) In the center-of-mass reference frame, the velocities are \(v_{n}^{\prime}=v_{n}-v_{\mathrm{cm}}\), where \(v_{\mathrm{cm}}\) is the velocity of the center of mass relative to the original frame of reference. Keeping in mind that \(v_{n}^{2}=\overrightarrow{\mathbf{v}}_{n} \cdot \overrightarrow{\mathbf{v}}_{n}\), show that the kinetic energy can be written $$K=K_{\mathrm{int}}+K_{\mathrm{cm}}$$ where \(K_{\text {int }}=\Sigma \frac{1}{2} m_{n} v_{n}^{\prime 2}\) and \(K_{\mathrm{cm}}=\frac{1}{2} M v_{\mathrm{cm}}^{2} .\) This demonstrates that the kinetic energy of a system of particles can be divided into an internal term and a center-of-mass term. The internal kinetic energy is measured in a frame of reference in which the center of mass is at rest; for example, the random motions of the molecules of gas in a container at rest are responsible for its internal translational kinetic energy.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.