Chapter 9: Problem 90
Chapter 9: Problem 90
All the tools & learning materials you need for study success - in one app.
Get started for freeThe average density of a fish can be found by first weighing it in air and then finding the scale reading for the fish completely immersed in water and suspended from a scale. If a fish has weight \(200.0 \mathrm{N}\) in air and scale reading \(15.0 \mathrm{N}\) in water, what is the average density of the fish?
A 85.0 -kg canoe made of thin aluminum has the shape of half of a hollowed-out log with a radius of \(0.475 \mathrm{m}\) and a length of \(3.23 \mathrm{m} .\) (a) When this is placed in the water, what percentage of the volume of the canoe is below the waterline? (b) How much additional mass can be placed in this canoe before it begins to \(\sin \mathrm{k} ?\) (interactive: buoyancy).
The maximum pressure most organisms can survive is about 1000 times atmospheric pressure. Only small, simple organisms such as tadpoles and bacteria can survive such high pressures. What then is the maximum depth at which these organisms can live under the sea (assuming that the density of seawater is \(1025 \mathrm{kg} / \mathrm{m}^{3}\) )?
What do you think about this solution?
We value your feedback to improve our textbook solutions.