Chapter 9: Problem 55
Chapter 9: Problem 55
All the tools & learning materials you need for study success - in one app.
Get started for freeA 85.0 -kg canoe made of thin aluminum has the shape of half of a hollowed-out log with a radius of \(0.475 \mathrm{m}\) and a length of \(3.23 \mathrm{m} .\) (a) When this is placed in the water, what percentage of the volume of the canoe is below the waterline? (b) How much additional mass can be placed in this canoe before it begins to \(\sin \mathrm{k} ?\) (interactive: buoyancy).
This table gives the terminal speeds of various spheres falling through the same fluid. The spheres all have the same radius. $$\begin{array}{llllllll}\hline m= & 8 & 12 & 16 & 20 & 24 & 28 & (\mathrm{g}) \\\ \hline v_{1}= & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 & 3.5 & (\mathrm{cm} / \mathrm{s}) \\\\\hline\end{array}$$, Is the drag force primarily viscous or turbulent? Explain your reasoning.
What do you think about this solution?
We value your feedback to improve our textbook solutions.