Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Moon's distance from Earth varies between \(3.56 \times 10^{5} \mathrm{km}\) at perigee and \(4.07 \times 10^{5} \mathrm{km}\) at apogee. What is the ratio of its orbital speed around Earth at perigee to that at apogee?

Short Answer

Expert verified
Answer: The Moon's orbital speed at perigee is about 1.143 times that at apogee.

Step by step solution

01

Express the conservation of angular momentum equation

Kepler's Second Law states that the angular momentum of a celestial body is conserved. For the Moon orbiting the Earth, the angular momentum can be expressed as: $$ L = m v r $$ Where L is the angular momentum, m is the moon's mass, v is the orbital speed, and r is the distance from the Earth. Since the angular momentum is conserved, we can write the equation for perigee and apogee as: $$ L_{perigee} = L_{apogee} $$ Since the mass of the Moon is constant, we can write: $$ v_{perigee} r_{perigee} = v_{apogee} r_{apogee} $$
02

Solve the equation for the ratio of orbital speed at perigee to that at apogee

Now we need to solve the equation for the ratio of orbital speed at perigee (shorter distance) to that at apogee (longer distance). We need to find: $$ \frac{v_{perigee}}{v_{apogee}} $$ Dividing both sides of the equation by \(v_{apogee} r_{apogee}\), we find: $$ \frac{v_{perigee}}{v_{apogee}} = \frac{r_{apogee}}{r_{perigee}} $$ Now substituting the given distances: $$ \frac{v_{perigee}}{v_{apogee}} = \frac{4.07 \times 10^{5} \mathrm{km}}{3.56 \times 10^{5} \mathrm{km}} $$ Finally, calculate the ratio: $$ \frac{v_{perigee}}{v_{apogee}} \approx 1.143 $$ So, the Moon's orbital speed at perigee is about 1.143 times that at apogee.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A man is doing push-ups. He has a mass of \(68 \mathrm{kg}\) and his center of gravity is located at a horizontal distance of \(0.70 \mathrm{m}\) from his palms and \(1.00 \mathrm{m}\) from his feet. Find the forces exerted by the floor on his palms and feet.

The string in a yo-yo is wound around an axle of radius \(0.500 \mathrm{cm} .\) The yo-yo has both rotational and translational motion, like a rolling object, and has mass \(0.200 \mathrm{kg}\) and outer radius \(2.00 \mathrm{cm} .\) Starting from rest, it rotates and falls a distance of \(1.00 \mathrm{m}\) (the length of the string). Assume for simplicity that the yo-yo is a uniform circular disk and that the string is thin compared to the radius of the axle. (a) What is the speed of the yo-yo when it reaches the distance of $1.00 \mathrm{m} ?$ (b) How long does it take to fall? [Hint: The transitional and rotational kinetic energies are related, but the yo-yo is not rolling on its outer radius.]
The radius of a wheel is \(0.500 \mathrm{m} .\) A rope is wound around the outer rim of the wheel. The rope is pulled with a force of magnitude $5.00 \mathrm{N},$ unwinding the rope and making the wheel spin CCW about its central axis. Ignore the mass of the rope. (a) How much rope unwinds while the wheel makes 1.00 revolution? (b) How much work is done by the rope on the wheel during this time? (c) What is the torque on the wheel due to the rope? (d) What is the angular displacement \(\Delta \theta\), in radians, of the wheel during 1.00 revolution? (e) Show that the numerical value of the work done is equal to the product \(\tau \Delta \theta\)
A centrifuge has a rotational inertia of $6.5 \times 10^{-3} \mathrm{kg} \cdot \mathrm{m}^{2}$ How much energy must be supplied to bring it from rest to 420 rad/s \((4000 \text { rpm }) ?\)
An experimental flywheel, used to store energy and replace an automobile engine, is a solid disk of mass \(200.0 \mathrm{kg}\) and radius $0.40 \mathrm{m} .\( (a) What is its rotational inertia? (b) When driving at \)22.4 \mathrm{m} / \mathrm{s}(50 \mathrm{mph}),$ the fully energized flywheel is rotating at an angular speed of \(3160 \mathrm{rad} / \mathrm{s} .\) What is the initial rotational kinetic energy of the flywheel? (c) If the total mass of the car is \(1000.0 \mathrm{kg},\) find the ratio of the initial rotational kinetic energy of the flywheel to the translational kinetic energy of the car. (d) If the force of air resistance on the car is \(670.0 \mathrm{N},\) how far can the car travel at a speed of $22.4 \mathrm{m} / \mathrm{s}(50 \mathrm{mph})$ with the initial stored energy? Ignore losses of mechanical energy due to means other than air resistance.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free