Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The pull cord of a lawnmower engine is wound around a drum of radius $6.00 \mathrm{cm} .\( While the cord is pulled with a force of \)75 \mathrm{N}$ to start the engine, what magnitude torque does the cord apply to the drum?

Short Answer

Expert verified
Answer: The magnitude of the torque applied to the drum by the pull cord is 4.50 Nā‹…m.

Step by step solution

01

Identify the given information

We have the following information given in the problem: - Radius of the drum: \(r = 6.00\,\text{cm}\) - Force applied to the pull cord: \(F = 75\,\text{N}\)
02

Convert the radius to meters

To calculate the torque, we need the radius in meters. To convert the radius from centimeters to meters, we can use the following conversion: \(1 \, \mathrm{m} = 100\, \mathrm{cm}\) Therefore, the radius in meters is: \(r = 6.00\, \mathrm{cm} \times \frac{1 \, \mathrm{m}}{100 \, \mathrm{cm}} = 0.0600\,\mathrm{m}\)
03

Calculate the torque

Now, we can use the formula for torque, which is: \(\tau = r \times F\) Plugging in the values for the radius and the force, we get: \(\tau = (0.0600 \, \mathrm{m}) \times (75 \, \mathrm{N})\) Calculating the torque: \(\tau = 4.50\,\mathrm{N} \cdot \mathrm{m}\)
04

State the result

The magnitude of the torque applied to the drum by the pull cord is \(4.50\,\mathrm{N} \cdot \mathrm{m}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A house painter stands \(3.0 \mathrm{m}\) above the ground on a \(5.0-\mathrm{m}\) -long ladder that leans against the wall at a point \(4.7 \mathrm{m}\) above the ground. The painter weighs \(680 \mathrm{N}\) and the ladder weighs $120 \mathrm{N} .$ Assuming no friction between the house and the upper end of the ladder, find the force of friction that the driveway exerts on the bottom of the ladder. (W) interactive: ladder; tutorial: ladder.
A stone used to grind wheat into flour is turned through 12 revolutions by a constant force of \(20.0 \mathrm{N}\) applied to the rim of a 10.0 -cm-radius shaft connected to the wheel. How much work is done on the stone during the 12 revolutions?
A hoop of \(2.00-\mathrm{m}\) circumference is rolling down an inclined plane of length \(10.0 \mathrm{m}\) in a time of \(10.0 \mathrm{s} .\) It started out from rest. (a) What is its angular velocity when it arrives at the bottom? (b) If the mass of the hoop, concentrated at the rim, is \(1.50 \mathrm{kg},\) what is the angular momentum of the hoop when it reaches the bottom of the incline? (c) What force(s) supplied the net torque to change the hoop's angular momentum? Explain. [Hint: Use a rotation axis through the hoop's center. \(]\) (d) What is the magnitude of this force?
A turntable must spin at 33.3 rpm \((3.49 \mathrm{rad} / \mathrm{s})\) to play an old-fashioned vinyl record. How much torque must the motor deliver if the turntable is to reach its final angular speed in 2.0 revolutions, starting from rest? The turntable is a uniform disk of diameter \(30.5 \mathrm{cm}\) and mass \(0.22 \mathrm{kg}\).
A house painter is standing on a uniform, horizontal platform that is held in equilibrium by two cables attached to supports on the roof. The painter has a mass of \(75 \mathrm{kg}\) and the mass of the platform is \(20.0 \mathrm{kg} .\) The distance from the left end of the platform to where the painter is standing is \(d=2.0 \mathrm{m}\) and the total length of the platform is $5.0 \mathrm{m}$ (a) How large is the force exerted by the left-hand cable on the platform? (b) How large is the force exerted by the right-hand cable?
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free