Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A mechanic turns a wrench using a force of \(25 \mathrm{N}\) at a distance of \(16 \mathrm{cm}\) from the rotation axis. The force is perpendicular to the wrench handle. What magnitude torque does she apply to the wrench?

Short Answer

Expert verified
Answer: The magnitude of the torque applied to the wrench is 4 Nm.

Step by step solution

01

Identify the given information

We are given two important pieces of information: - Force applied on the wrench handle: \(F = 25 \mathrm{N}\) - Distance from the rotation axis to the point where the force is applied: \(d = 16 \mathrm{cm}\) (or \(0.16 \mathrm{m}\))
02

Recall the formula for torque

The formula to calculate the torque (\(\tau\)) is given by: $$\tau = F \cdot d \cdot \sin(\theta)$$ where \(\theta\) is the angle between the force and the lever arm. In our case, since the force is perpendicular to the wrench handle, the angle \(\theta = 90^{\circ}\) and the sine of \(\theta\) is equal to 1: $$\sin(90^{\circ}) = 1$$
03

Calculate the torque

Now that we have all necessary information and the formula, we can calculate the magnitude of the torque as follows: $$\tau = F \cdot d \cdot \sin(\theta) = 25 \mathrm{N} \cdot 0.16 \mathrm{m} \cdot 1 = 4 \mathrm{Nm}$$ So, the magnitude of the torque applied to the wrench is \(4 \mathrm{Nm}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A figure skater is spinning at a rate of 1.0 rev/s with her arms outstretched. She then draws her arms in to her chest, reducing her rotational inertia to \(67 \%\) of its original value. What is her new rate of rotation?
Two children standing on opposite sides of a merry-goround (see Fig. 8.5 ) are trying to rotate it. They each push in opposite directions with forces of magnitude \(10.0 \mathrm{N} .\) (a) If the merry-go-round has a mass of $180 \mathrm{kg}\( and a radius of \)2.0 \mathrm{m},$ what is the angular acceleration of the merry-go-round? (Assume the merry-go-round is a uniform disk.) (b) How fast is the merry-go-round rotating after \(4.0 \mathrm{s} ?\)
A bicycle wheel, of radius \(0.30 \mathrm{m}\) and mass \(2 \mathrm{kg}\) (concentrated on the rim), is rotating at 4.00 rev/s. After 50 s the wheel comes to a stop because of friction. What is the magnitude of the average torque due to frictional forces?
A 68 -kg woman stands straight with both feet flat on the floor. Her center of gravity is a horizontal distance of \(3.0 \mathrm{cm}\) in front of a line that connects her two ankle joints. The Achilles tendon attaches the calf muscle to the foot a distance of \(4.4 \mathrm{cm}\) behind the ankle joint. If the Achilles tendon is inclined at an angle of \(81^{\circ}\) with respect to the horizontal, find the force that each calf muscle needs to exert while she is standing. [Hint: Consider the equilibrium of the part of the body above the ankle joint.]
A stone used to grind wheat into flour is turned through 12 revolutions by a constant force of \(20.0 \mathrm{N}\) applied to the rim of a 10.0 -cm-radius shaft connected to the wheel. How much work is done on the stone during the 12 revolutions?
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free