Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A cue stick hits a cue ball with an average force of \(24 \mathrm{N}\) for a duration of \(0.028 \mathrm{s}\). If the mass of the ball is \(0.16 \mathrm{kg}\) how fast is it moving after being struck?

Short Answer

Expert verified
Answer: The final velocity of the cue ball is 4.2 m/s.

Step by step solution

01

Identify the given information and the formula we will use.

We are given the mass of the cue ball (m = 0.16 kg), the force exerted by the cue stick (F = 24 N), and the duration of the force (t = 0.028 s). We will use Newton's second law of motion, given by F = ma, to find the acceleration of the ball.
02

Calculate the acceleration.

To find the acceleration (a), we will rearrange the formula F = ma to solve for a: a = F / m Now, we can plug in the values for the force and mass: a = (24 N) / (0.16 kg) = 150 \(\frac{m}{s^2}\) So, the acceleration of the cue ball is 150 m/s².
03

Calculate the final velocity using the formula v = u + at.

To find the final velocity (v) of the cue ball, we will use the formula v = u + at, where u is the initial velocity, a is the acceleration, and t is the time duration. Since the cue ball is initially at rest, its initial velocity (u) is 0, and our formula becomes: v = 0 + (150 m/s²)(0.028 s) Now, we can multiply the acceleration by the time duration: v = (150 m/s²)(0.028 s) = 4.2 m/s So, the final velocity of the cue ball after being struck is 4.2 m/s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Body A of mass \(M\) has an original velocity of \(6.0 \mathrm{m} / \mathrm{s}\) in the \(+x\)-direction toward a stationary body (body \(\mathrm{B}\) ) of the same mass. After the collision, body A has velocity components of $1.0 \mathrm{m} / \mathrm{s}\( in the \)+x\( -direction and \)2.0 \mathrm{m} / \mathrm{s}$ in the + y-direction. What is the magnitude of body B's velocity after the collision?
An intergalactic spaceship is traveling through space far from any planets or stars, where no human has gone before. The ship carries a crew of 30 people (of total mass \(\left.2.0 \times 10^{3} \mathrm{kg}\right) .\) If the speed of the spaceship is \(1.0 \times 10^{5} \mathrm{m} / \mathrm{s}\) and its mass (excluding the crew) is \(4.8 \times 10^{4} \mathrm{kg},\) what is the magnitude of the total momentum of the ship and the crew?
Block \(A,\) with a mass of \(220 \mathrm{g},\) is traveling north on a frictionless surface with a speed of \(5.0 \mathrm{m} / \mathrm{s} .\) Block \(\mathrm{B}\) with a mass of \(300 \mathrm{g}\) travels west on the same surface until it collides with A. After the collision, the blocks move off together with a velocity of \(3.13 \mathrm{m} / \mathrm{s}\) at an angle of \(42.5^{\circ}\) to the north of west. What was \(\mathrm{B}\) 's speed just before the collision?
A sports car traveling along a straight line increases its speed from $20.0 \mathrm{mi} / \mathrm{h}\( to \)60.0 \mathrm{mi} / \mathrm{h} .$ (a) What is the ratio of the final to the initial magnitude of its momentum? (b) What is the ratio of the final to the initial kinetic energy?
Use the result of Problem 54 to show that in any elastic collision between two objects, the relative speed of the two is the same before and after the collision. [Hints: Look at the collision in its \(\mathrm{CM}\) frame - the reference frame in which the \(\mathrm{CM}\) is at rest. The relative speed of two objects is the same in any inertial reference frame.]
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free