Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Hilda holds a gardening book of weight \(10 \mathrm{N}\) at a height of $1.0 \mathrm{m}\( above her patio for \)50 \mathrm{s}$. How much work does she do on the book during that 50 s?

Short Answer

Expert verified
Answer: Hilda does 0 J (joules) of work on the book during the 50 seconds.

Step by step solution

01

Identify the force and displacement of the book.

Hilda is holding the book steady, so the force she is applying on the book is equal to the weight of the book which is 10 N. Since the book is not displaced, the displacement is 0 m.
02

Calculate the work done by Hilda on the book.

The formula to calculate the work done is: \(W = F \cdot d \cdot \cos(\theta)\) where \(W\) is the work done, \(F\) is the force applied on the object, \(d\) is the displacement, and \(\theta\) is the angle between the force and the direction of displacement. In our case, \(F = 10\,\text{N}\), \(d = 0\,\text{m}\), and the force is applied in the same direction as the displacement, so \(\theta = 0^\circ\). However, there's no need to calculate the cosine of the angle, as the displacement is 0 m, so the work done by Hilda is: \(W = F \cdot d = 10\,\text{N} \cdot 0\,\text{m} = 0\,\text{J}\) So, Hilda does 0 J (joules) of work on the book during the 50 s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The length of a spring increases by \(7.2 \mathrm{cm}\) from its relaxed length when a mass of \(1.4 \mathrm{kg}\) is hanging in equilibrium from the spring. (a) What is the spring constant? (b) How much elastic potential energy is stored in the spring? (c) A different mass is suspended and the spring length increases by \(12.2 \mathrm{cm}\) from its relaxed length to its new equilibrium position. What is the second mass?
A shooting star is a meteoroid that burns up when it reaches Earth's atmosphere. Many of these meteoroids are quite small. Calculate the kinetic energy of a meteoroid of mass \(5.0 \mathrm{g}\) moving at a speed of $48 \mathrm{km} / \mathrm{s}$ and compare it to the kinetic energy of a 1100 -kg car moving at \(29 \mathrm{m} / \mathrm{s}(65 \mathrm{mi} / \mathrm{h})\).

Use this method to find how the speed with which animals of similar shape can run up a hill depends on the size of the animal. Let \(L\) represent some characteristic length, such as the height or diameter of the animal. Assume that the maximum rate at which the animal can do work is proportional to the animal's surface area: \(P_{\max } \propto L^{2} .\) Set the maximum power output equal to the rate of increase of gravitational potential energy and determine how the speed \(v\) depends on \(L\).

A hang glider moving at speed \(9.5 \mathrm{m} / \mathrm{s}\) dives to an altitude 8.2 m lower. Ignoring drag, how fast is it then moving?

The escape speed from Earth is \(11.2 \mathrm{km} / \mathrm{s},\) but that is only the minimum speed needed to escape Earth's gravitational pull; it does not give the object enough energy to leave the solar system. What is the minimum speed for an object near the Earth's surface so that the object escapes both the Earth's and the Sun's gravitational pulls? Ignore drag due to the atmosphere and the gravitational forces due to the Moon and the other planets. Also ignore the rotation and the orbital motion of the Earth.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free