Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In \(1899,\) Charles \(\mathrm{M}\). "Mile a Minute" Murphy set a record for speed on a bicycle by pedaling for a mile at an average of $62.3 \mathrm{mph}(27.8 \mathrm{m} / \mathrm{s})$ on a 3 -mi track of plywood planks set over railroad ties in the draft of a Long Island Railroad train. In \(1985,\) a record was set for this type of "motor pacing" by Olympic cyclist John Howard who raced at 152.2 mph \((68.04 \mathrm{m} / \mathrm{s})\) in the wake of a race car at Bonneville Salt Flats. The race car had a modified tail assembly designed to reduce the air drag on the cyclist. What was the kinetic energy of the bicycle plus rider in each of these feats? Assume that the mass of bicycle plus rider is \(70.5 \mathrm{kg}\) in each case.

Short Answer

Expert verified
Question: Calculate the kinetic energy of the bicycle plus rider for Mile a Minute Murphy and John Howard, given their speeds and the mass of the bicycle plus rider. Answer: The kinetic energy for Mile a Minute Murphy is approximately 27,040.59 Joules and for John Howard is approximately 166,473.32 Joules.

Step by step solution

01

Calculate the Kinetic Energy for Mile a Minute Murphy

We are given Murphy's speed as \(27.8 \ m/s\) and the mass of the bicycle plus rider as \(70.5 \ kg\). We can now use the kinetic energy formula to calculate the kinetic energy: \(K = \frac{1}{2}mv^2\) \(K = \frac{1}{2}(70.5 \ \text{kg})(27.8 \ \text{m/s})^2\) \(K \approx 27{,}040.59 \ \text{Joules}\) The kinetic energy of the bicycle plus rider for Mile a Minute Murphy is approximately \(27{,}040.59 \ \text{Joules}\).
02

Calculate the Kinetic Energy for John Howard

We are given Howard's speed as \(68.04 \ m/s\) and the mass of the bicycle plus rider as \(70.5 \ kg\). We can now use the kinetic energy formula to calculate the kinetic energy: \(K = \frac{1}{2}mv^2\) \(K = \frac{1}{2}(70.5 \ \text{kg})(68.04 \ \text{m/s})^2\) \(K \approx 166{,}473.32 \ \text{Joules}\) The kinetic energy of the bicycle plus rider for John Howard is approximately \(166{,}473.32 \ \text{Joules}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A car with mass of \(1000.0 \mathrm{kg}\) accelerates from $0 \mathrm{m} / \mathrm{s}\( to \)40.0 \mathrm{m} / \mathrm{s}\( in \)10.0 \mathrm{s} .$ Ignore air resistance. The engine has a \(22 \%\) efficiency, which means that \(22 \%\) of the energy released by the burning gasoline is converted into mechanical energy. (a) What is the average mechanical power output of the engine? (b) What volume of gasoline is consumed? Assume that the burning of \(1.0 \mathrm{L}\) of gasoline releases 46 MJ of energy.
Prove that \(U=-2 K\) for any gravitational circular orbit. [Hint: Use Newton's second law to relate the gravitational force to the acceleration required to maintain uniform circular motion.]
Two springs with spring constants \(k_{1}\) and \(k_{2}\) are connected in parallel. (a) What is the effective spring constant of the combination? (b) If a hanging object attached to the combination is displaced by \(2.0 \mathrm{cm}\) from the relaxed position, what is the potential energy stored in the spring for \(k_{1}=5.0 \mathrm{N} / \mathrm{cm}\) and $k_{2}=3.0 \mathrm{N} / \mathrm{cm} ?$ [See Problem \(83(\mathrm{b}) .]\)
Jane is running from the ivory hunters in the jungle. Cheetah throws a 7.0 -m-long vine toward her. Jane leaps onto the vine with a speed of $4.0 \mathrm{m} / \mathrm{s} .$ When she catches the vine, it makes an angle of \(20^{\circ}\) with respect to the vertical. (a) When Jane is at her lowest point, she has moved downward a distance \(h\) from the height where she originally caught the vine. Show that \(h\) is given by \(h=L-L \cos 20^{\circ},\) where \(L\) is the length of the vine. (b) How fast is Jane moving when she is at the lowest point in her swing? (c) How high can Jane swing above the lowest point in her swing?
A car moving at \(30 \mathrm{mi} / \mathrm{h}\) is stopped by jamming on the brakes and locking the wheels. The car skids 50 ft before coming to rest. How far would the car skid if it were initially moving at $60 \mathrm{mi} / \mathrm{h} ?$ [Hint: You will not have to do any unit conversions if you set up the problem as a proportion. \(]\)
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free