Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An automobile with a mass of \(1600 \mathrm{kg}\) has a speed of $30.0 \mathrm{m} / \mathrm{s} .$ What is its kinetic energy?

Short Answer

Expert verified
Answer: The kinetic energy of the automobile is 720,000 J.

Step by step solution

01

Identify the given values

Here, we are given the mass of the automobile, \(m = 1600 \mathrm{kg}\), and its speed, \(v = 30.0 \mathrm{m/s}\).
02

Write down the formula for kinetic energy

The formula for kinetic energy is given by: \(KE = \frac{1}{2}mv^2\).
03

Plug in the given values into the formula

Lets plug the given mass \(m\) and speed \(v\) into the formula of kinetic energy. Thereby, we can substitute \(m=1600\,\mathrm{kg}\) and \(v=30.0\,\mathrm{m/s}\): \(KE = \frac{1}{2} (1600\,\mathrm{kg}) (30.0\,\mathrm{m/s})^2\).
04

Perform the calculation

Now, let's calculate the kinetic energy: \(KE = \frac{1}{2} (1600\,\mathrm{kg}) (30.0\,\mathrm{m/s})^2 = 800\,\mathrm{kg}\cdot (900\,\mathrm{m^2/s^2}) = 720,\!000\,\mathrm{J}\).
05

State the final answer

The kinetic energy of the automobile is \(720,\!000\,\mathrm{J}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A block (mass \(m\) ) hangs from a spring (spring constant k). The block is released from rest a distance \(d\) above its equilibrium position. (a) What is the speed of the block as it passes through the equilibrium point? (b) What is the maximum distance below the equilibrium point that the block will reach?
The forces required to extend a spring to various lengths are measured. The results are shown in the following table. Using the data in the table, plot a graph that helps you to answer the following two questions: (a) What is the spring constant? (b) What is the relaxed length of the spring? $$\begin{array}{llllll} \hline \text { Force (N) } & 1.00 & 2.00 & 3.00 & 4.00 & 5.00 \\\ \text { Spring length (cm) } & 14.5 & 18.0 & 21.5 & 25.0 & 28.5 \\\ \hline \end{array}$$
Emil is tossing an orange of mass \(0.30 \mathrm{kg}\) into the air. (a) Emil throws the orange straight up and then catches it, throwing and catching it at the same point in space. What is the change in the potential energy of the orange during its trajectory? Ignore air resistance. (b) Emil throws the orange straight up, starting \(1.0 \mathrm{m}\) above the ground. He fails to catch it. What is the change in the potential energy of the orange during this flight?
A satellite is placed in a noncircular orbit about the Earth. The farthest point of its orbit (apogee) is 4 Earth radii from the center of the Earth, while its nearest point (perigee) is 2 Earth radii from the Earth's center. If we define the gravitational potential energy \(U\) to be zero for an infinite separation of Earth and satellite, find the ratio $U_{\text {perigce }} / U_{\text {apogec }}$
Sam pushes a \(10.0-\mathrm{kg}\) sack of bread flour on a frictionless horizontal surface with a constant horizontal force of \(2.0 \mathrm{N}\) starting from rest. (a) What is the kinetic energy of the sack after Sam has pushed it a distance of \(35 \mathrm{cm} ?\) (b) What is the speed of the sack after Sam has pushed it a distance of \(35 \mathrm{cm} ?\)
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free