Chapter 5: Problem 6
Chapter 5: Problem 6
All the tools & learning materials you need for study success - in one app.
Get started for freeThe rotor is an amusement park ride where people stand against the inside of a cylinder. Once the cylinder is spinning fast enough, the floor drops out. (a) What force keeps the people from falling out the bottom of the cylinder? (b) If the coefficient of friction is 0.40 and the cylinder has a radius of \(2.5 \mathrm{m},\) what is the minimum angular speed of the cylinder so that the people don't fall out? (Normally the operator runs it considerably faster as a safety measure.) (IMAGE CAN'T COPY)
In an amusement park rocket ride, cars are suspended from 4.25 -m cables attached to rotating arms at a distance of \(6.00 \mathrm{m}\) from the axis of rotation. The cables swing out at an angle of \(45.0^{\circ}\) when the ride is operating. What is the angular speed of rotation?
What do you think about this solution?
We value your feedback to improve our textbook solutions.