Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A locomotive pulls a train of 10 identical cars, on a track that runs east- west, with a force of \(2.0 \times 10^{6} \mathrm{N}\) directed east. What is the force with which the last car to the west pulls on the rest of the train?

Short Answer

Expert verified
Answer: The force exerted by the last car to the west is \(2.0 \times 10^6 N\) directed west.

Step by step solution

01

Identify given information and what is asked for

The given information is that the locomotive is pulling the train with a force of \(2.0 \times 10^6 N\) directed east. We are asked to find the force with which the last car to the west pulls on the rest of the train.
02

Apply Newton's third law to the situation

According to Newton's third law, if object A exerts a force on object B, then object B must exert an equal and opposite force on object A. In this case, the locomotive (object A) exerts a force on the first car (object B), so the first car exerts an equal and opposite force on the locomotive.
03

Consider the force exerted by the last car to the west

The force exerted by the last car to the west is equal and opposite to the force exerted by the locomotive. This is due to the fact that the train is in equilibrium, with no net acceleration, and the forces acting on it must cancel out.
04

Calculate the force exerted by the last car to the west

Since the force exerted by the last car to the west is equal and opposite to the force exerted by the locomotive, we can calculate its value as follows: Force exerted by the last car = Force exerted by the locomotive This means that the force exerted by the last car to the west is \(2.0 \times 10^6 N\) directed west.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the altitudes above the Earth's surface where Earth's gravitational field strength would be (a) two thirds and (b) one third of its value at the surface. [Hint: First find the radius for each situation; then recall that the altitude is the distance from the surface to a point above the surface. Use proportional reasoning.]
A toy freight train consists of an engine and three identical cars. The train is moving to the right at constant speed along a straight, level track. Three spring scales are used to connect the cars as follows: spring scale \(A\) is located between the engine and the first car; scale \(\mathrm{B}\) is between the first and second cars; scale \(C\) is between the second and third cars. (a) If air resistance and friction are negligible, what are the relative readings on the three spring scales \(\mathrm{A}, \mathrm{B},\) and \(\mathrm{C} ?\) (b) Repeat part (a), taking air resistance and friction into consideration this time. [Hint: Draw an FBD for the car in the middle. \(]\) (c) If air resistance and friction together cause a force of magnitude \(5.5 \mathrm{N}\) on each car, directed toward the left, find the readings of scales $\mathrm{A}, \mathrm{B},\( and \)\mathrm{C}$
A model rocket is fired vertically from rest. It has a net acceleration of \(17.5 \mathrm{m} / \mathrm{s}^{2} .\) After \(1.5 \mathrm{s}\), its fuel is exhausted and its only acceleration is that due to gravity. (a) Ignoring air resistance, how high does the rocket travel? (b) How long after liftoff does the rocket return to the ground?
Before hanging new William Morris wallpaper in her bedroom, Brenda sanded the walls lightly to smooth out some irregularities on the surface. The sanding block weighs \(2.0 \mathrm{N}\) and Brenda pushes on it with a force of $3.0 \mathrm{N}\( at an angle of \)30.0^{\circ}$ with respect to the vertical, and angled toward the wall. Draw an FBD for the sanding block as it moves straight up the wall at a constant speed. What is the coefficient of kinetic friction between the wall and the block?
A crow perches on a clothesline midway between two poles. Each end of the rope makes an angle of \(\theta\) below the horizontal where it connects to the pole. If the weight of the crow is \(W,\) what is the tension in the rope? Ignore the weight of the rope.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free