Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A ball is thrown horizontally off the edge of a cliff with an initial speed of \(20.0 \mathrm{m} / \mathrm{s} .\) (a) How long does it take for the ball to fall to the ground 20.0 m below? (b) How long would it take for the ball to reach the ground if it were dropped from rest off the cliff edge? (c) How long would it take the ball to fall to the ground if it were thrown at an initial velocity of \(20.0 \mathrm{m} / \mathrm{s}\) but \(18^{\circ}\) below the horizontal?

Short Answer

Expert verified
Rearranging the equation and solving for \(t\) gives: \(t^2 = \dfrac{2(20)}{9.81}\) \(t^2 ≈ 4.08\) Therefore, \(t = \sqrt{4.08} ≈ 2.02 \mathrm{s}\) In scenario (a) where the ball is thrown horizontally, it takes approximately 2.02 seconds for the ball to hit the ground.

Step by step solution

01

Scenario (a): Ball thrown horizontally

In this scenario, the ball is thrown horizontally off the edge of the cliff with an initial speed of 20.0 m/s. Since the motion of the ball is happening both horizontally and vertically, we'll have separate equations for horizontal and vertical planes. First, we need to find the time it takes for the ball to fall 20.0 m below. Using the vertical motion equation with an initial velocity of 0 (due to no vertical motion initially) and with acceleration due to gravity \(\mathrm{g} = 9.81 \mathrm{m} / \mathrm{s}^2\), we have: \(y = v_{0y} t - 0.5 gt^2\) Plugging in the values, we get: \(20 = 0 - 0.5(9.81)t^2\) Now, we need to solve for \(t\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A projectile is launched at \(t=0\) with initial speed \(v_{\mathrm{i}}\) at an angle \(\theta\) above the horizontal. (a) What are \(v_{x}\) and \(v_{y}\) at the projectile's highest point? (b) Find the time \(t\) at which the projectile reaches its maximum height. (c) Show that the maximum height \(H\) of the projectile is $$H=\frac{\left(v_{i} \sin \theta\right)^{2}}{2 g}$$
A motor scooter rounds a curve on the highway at a constant speed of $20.0 \mathrm{m} / \mathrm{s} .$ The original direction of the scooter was due east; after rounding the curve the scooter is heading \(36^{\circ}\) north of east. The radius of curvature of the road at the location of the curve is $150 \mathrm{m}$ What is the average acceleration of the scooter as it rounds the curve?
A car travels three quarters of the way around a circle of radius $20.0 \mathrm{m}\( in a time of \)3.0 \mathrm{s}$ at a constant speed. The initial velocity is west and the final velocity is south. (a) Find its average velocity for this trip. (b) What is the car's average acceleration during these 3.0 s? (c) Explain how a car moving at constant speed has a nonzero average acceleration.
Two displacement vectors each have magnitude \(20 \mathrm{km}\) One is directed \(60^{\circ}\) above the \(+x\) -axis; the other is directed \(60^{\circ}\) below the \(+x\) -axis. What is the vector sum of these two displacements? Use graph paper to find your answer.
A ballplayer standing at home plate hits a baseball that is caught by another player at the same height above the ground from which it was hit. The ball is hit with an initial velocity of \(22.0 \mathrm{m} / \mathrm{s}\) at an angle of \(60.0^{\circ}\) above the horizontal. (a) How high will the ball rise? (b) How much time will elapse from the time the ball leaves the bat until it reaches the fielder? (c) At what distance from home plate will the fielder be when he catches the ball?
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free