Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A skydiver is falling straight down at \(55 \mathrm{m} / \mathrm{s}\) when he opens his parachute and slows to \(8.3 \mathrm{m} / \mathrm{s}\) in $3.5 \mathrm{s} .$ What is the average acceleration of the skydiver during those 3.5 s?

Short Answer

Expert verified
Answer: The skydiver's average acceleration during these 3.5 seconds is -13.34 m/s^2.

Step by step solution

01

Identify the given information

The problem gives us the following information: - Initial velocity, \(v_i = 55 \mathrm{m} / \mathrm{s}\) - Final velocity, \(v_f = 8.3 \mathrm{m} / \mathrm{s}\) - Time, \(t = 3.5 \mathrm{s}\)
02

Write down the formula for average acceleration

The formula to calculate average acceleration is given by: Average acceleration = \(\frac{v_f - v_i}{t}\)
03

Substitute the values into the formula

Now, we will plug the given values into the formula: Average acceleration = \(\frac{8.3\,\mathrm{m/s} - 55\,\mathrm{m/s}}{3.5\,\mathrm{s}}\)
04

Calculate the average acceleration

Carry out the calculations: Average acceleration = \(\frac{-46.7\,\mathrm{m/s}}{3.5\,\mathrm{s}} = -13.34\,\mathrm{m/s^2}\)
05

Interpret the result

In this case, the average acceleration during the 3.5 seconds is \(-13.34 \,\mathrm{m/s^2}\). The negative sign indicates that the skydiver is slowing down as he experiences upwards (deceleration) force due to opening of parachute.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A vector \(\overrightarrow{\mathbf{A}}\) has a magnitude of \(22.2 \mathrm{cm}\) and makes an angle of \(130.0^{\circ}\) with the positive \(x\) -axis. What are the \(x\) - and \(y\) -components of this vector?
Jason is practicing his tennis stroke by hitting balls against a wall. The ball leaves his racquet at a height of \(60 \mathrm{cm}\) above the ground at an angle of \(80^{\circ}\) with respect to the vertical. (a) The speed of the ball as it leaves the racquet is \(20 \mathrm{m} / \mathrm{s}\) and it must travel a distance of \(10 \mathrm{m}\) before it reaches the wall. How far above the ground does the ball strike the wall? (b) Is the ball on its way up or down when it hits the wall?
The citizens of Paris were terrified during World War I when they were suddenly bombarded with shells fired from a long-range gun known as Big Bertha. The barrel of the gun was \(36.6 \mathrm{m}\) long and it had a muzzle speed of \(1.46 \mathrm{km} / \mathrm{s} .\) When the gun's angle of elevation was set to \(55^{\circ},\) what would be the range? For the purposes of solving this problem, neglect air resistance. (The actual range at this elevation was \(121 \mathrm{km} ;\) air resistance cannot be ignored for the high muzzle speed of the shells.)
Vector \(\overrightarrow{\mathbf{A}}\) is directed along the positive \(y\) -axis and has magnitude \(\sqrt{3.0}\) units. Vector \(\overrightarrow{\mathbf{B}}\) is directed along the negative \(x\) -axis and has magnitude 1.0 unit. (a) What are the magnitude and direction of \(\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}} ?\) (b) What are the magnitude and direction of \(\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}} ?\) (c) What are the \(x\) - and \(y\) -components of \(\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{A}} ?\)
A scout troop is practicing its orienteering skills with map and compass. First they walk due east for \(1.2 \mathrm{km}\) Next, they walk \(45^{\circ}\) west of north for \(2.7 \mathrm{km} .\) In what direction must they walk to go directly back to their starting point? How far will they have to walk? Use graph paper, ruler, and protractor to find a geometrical solution.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free