Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A scout troop is practicing its orienteering skills with map and compass. First they walk due east for \(1.2 \mathrm{km}\) Next, they walk \(45^{\circ}\) west of north for \(2.7 \mathrm{km} .\) In what direction must they walk to go directly back to their starting point? How far will they have to walk? Use graph paper, ruler, and protractor to find a geometrical solution.

Short Answer

Expert verified
Answer: To find the direction and distance for the scout troop to return to their starting point, follow these steps: 1. Draw the vectors on graph paper, creating a triangle with points A, B, and C. 2. Measure the angle from point C to point A using a protractor, starting from due east and moving counter-clockwise. 3. Calculate the distance by measuring the length of the line segment between points C and A and multiplying it by the chosen scale (0.6 km/cm). 4. The final answer will consist of the measured angle as the direction and the calculated distance in kilometers.

Step by step solution

01

Draw the vectors on graph paper

Choose a suitable scale (such as 1 cm = 0.6 km) and draw the two movements on the graph paper. Begin at a designated starting point, A, and draw an arrow 2 cm long pointing due east (toward the right). Label the end of the arrow as point B. From point B, draw an arrow that is 4.5 cm long, representing 2.7 km, at an angle of 45 degrees west of north (135 degrees from due east). Label the end of this arrow as point C. Points A, B, and C should form a triangle.
02

Find the required direction

Using the protractor, measure the angle from point C to point A (the direction the scouts need to walk). Start measuring the angle from due east and move counter-clockwise towards point A.
03

Calculate the distance

Use the ruler to measure the length of the line segment between points C and A. Multiply the length by the chosen scale (0.6 km/cm) to obtain the distance in kilometers.
04

Final answer

The angle measured in step 2 represents the required direction to return to the starting point, and the distance calculated in step 3 gives the distance they need to walk.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A jetliner flies east for \(600.0 \mathrm{km},\) then turns \(30.0^{\circ}\) toward the south and flies another \(300.0 \mathrm{km} .\) (a) How far is the plane from its starting point? (b) In what direction could the jetliner have flown directly to the same destination (in a straight-line path)? (c) If the jetliner flew at a constant speed of \(400.0 \mathrm{km} / \mathrm{h}\), how long did the trip take? (d) Moving at the same speed, how long would the direct flight have taken?
A beanbag is thrown horizontally from a dorm room window a height \(h\) above the ground. It hits the ground a horizontal distance \(h\) (the same distance \(h\) ) from the dorm directly below the window from which it was thrown. Ignoring air resistance, find the direction of the beanbag's velocity just before impact.
A pilot starting from Athens, New York, wishes to fly to Sparta, New York, which is \(320 \mathrm{km}\) from Athens in the direction $20.0^{\circ} \mathrm{N}\( of \)\mathrm{E} .$ The pilot heads directly for Sparta and flies at an airspeed of \(160 \mathrm{km} / \mathrm{h}\). After flying for $2.0 \mathrm{h}$, the pilot expects to be at Sparta, but instead he finds himself \(20 \mathrm{km}\) due west of Sparta. He has forgotten to correct for the wind. (a) What is the velocity of the plane relative to the air? (b) Find the velocity (magnitude and direction) of the plane relative to the ground. (c) Find the wind speed and direction.
A boat that can travel at \(4.0 \mathrm{km} / \mathrm{h}\) in still water crosses a river with a current of \(1.8 \mathrm{km} / \mathrm{h}\). At what angle must the boat be pointed upstream to travel straight across the river? In other words, in what direction is the velocity of the boat relative to the water?
A speedboat heads west at \(108 \mathrm{km} / \mathrm{h}\) for 20.0 min. It then travels at \(60.0^{\circ}\) south of west at \(90.0 \mathrm{km} / \mathrm{h}\) for 10.0 min. (a) What is the average speed for the trip? (b) What is the average velocity for the trip?
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free