Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The diffraction pattern from a single slit is viewed on a screen. Using blue light, the width of the central maximum is \(2.0 \mathrm{cm} .\) (a) Would the central maximum be narrower or wider if red light is used instead? (b) If the blue light has wavelength \(0.43 \mu \mathrm{m}\) and the red light has wavelength \(0.70 \mu \mathrm{m},\) what is the width of the central maximum when red light is used?

Short Answer

Expert verified
Answer: The width of the central maximum when red light is used will be approximately 3.3 cm.

Step by step solution

01

Compare Wavelengths of Blue and Red Light

Blue light has a shorter wavelength than red light, which means that blue light diffracts less than red light. As a result, red light will create a wider central maximum than blue light.
02

Find the Ratio of the Wavelengths and Obtain the Width of the Central Maximum

To determine the width of the central maximum when red light is used, we'll first find the wavelength ratio: \(\frac{\lambda_{red}}{\lambda_{blue}} = \frac{0.70}{0.43}\). Now to find the width of the central maximum with red light, multiply the width of the central maximum with blue light by the ratio of the wavelengths: \(width_{red} = width_{blue} \times \frac{\lambda_{red}}{\lambda_{blue}}\). Using the given values: \(width_{red} = 2.0 \mathrm{cm} \times \frac{0.70}{0.43} \approx 3.3 \mathrm{cm}\). So, the width of the central maximum when red light is used is approximately 3.3 cm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A soap film has an index of refraction \(n=1.50 .\) The film is viewed in transmitted light. (a) At a spot where the film thickness is $910.0 \mathrm{nm},$ which wavelengths are weakest in the transmitted light? (b) Which wavelengths are strongest in transmitted light?
A thin soap film \((n=1.35)\) is suspended in air. The spectrum of light reflected from the film is missing two visible wavelengths of $500.0 \mathrm{nm}\( and \)600.0 \mathrm{nm},$ with no missing wavelengths between the two. (a) What is the thickness of the soap film? (b) Are there any other visible wavelengths missing from the reflected light? If so, what are they? (c) What wavelengths of light are strongest in the transmitted light?
Sonya is designing a diffraction experiment for her students. She has a laser that emits light of wavelength \(627 \mathrm{nm}\) and a grating with a distance of \(2.40 \times 10^{-3} \mathrm{mm}\) between slits. She hopes to shine the light through the grating and display a total of nine interference maxima on a screen. She finds that no matter how she arranges her setup, she can see only seven maxima. Assuming that the intensity of the light is not the problem, why can't Sonya display the \(m=4\) interference maxima on either side?
Diffraction and the Resolution of Optical Instruments The Hubble Space Telescope (HST) has excellent resolving power because there is no atmospheric distortion of the light. Its 2.4 -m-diameter primary mirror can collect light from distant galaxies that formed early in the history of the universe. How far apart can two galaxies be from each other if they are 10 billion light-years away from Earth and are barely resolved by the HST using visible light with a wavelength of \(400 \mathrm{nm} ?\)
A steep cliff west of Lydia's home reflects a \(1020-\mathrm{kHz}\) radio signal from a station that is \(74 \mathrm{km}\) due east of her home. If there is destructive interference, what is the minimum distance of the cliff from her home? Assume there is a \(180^{\circ}\) phase shift when the wave reflects from the cliff.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free