Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A thin film of oil \((n=1.50)\) is spread over a puddle of water \((n=1.33) .\) In a region where the film looks red from directly above $(\lambda=630 \mathrm{nm}),$ what is the minimum possible thickness of the film? (tutorial: thin film).

Short Answer

Expert verified
Answer: The minimum thickness of the oil film is 210 nm.

Step by step solution

01

Understand thin film interference

Thin film interference occurs when light waves reflect off two surfaces separated by a thin film, causing constructive or destructive interference between the reflected waves. In this case, the film is the oil on top of the water. Constructive interference leads to a brighter color, while destructive interference results in a darker color.
02

Find the interference condition for a minimum thickness

We will use the following equation for the constructive interference of the thin film: $$2nt = m\lambda_{air}$$ where \(n\) is the refractive index of the oil, \(t\) is the film thickness, \(m\) is an integer representing the order of constructive interference, and \(\lambda_{air}\) is the wavelength of light in air. In our case, \(n=1.50\), \(\lambda_{air}=630\,\text{nm}\), and we want to find the smallest possible \(t\) for constructive interference, so we will consider the case when \(m=1\).
03

Solve for the minimum thickness of the film

Plug in the given values and solve for \(t\): $$2(1.50)t = 1(630\,\text{nm})$$ $$t = \frac{630\,\text{nm}}{2(1.50)}$$ $$t = 210\,\text{nm}$$ Therefore, the minimum possible thickness of the film for it to appear red when viewed from above is 210 nm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a double-slit experiment, what is the linear distance on the screen between adjacent maxima if the wavelength is \(546 \mathrm{nm}\), the slit separation is \(0.100 \mathrm{mm},\) and the slit-screen separation is \(20.0 \mathrm{cm} ?\)

If diffraction were the only limitation, what would be the maximum distance at which the headlights of a car could be resolved (seen as two separate sources) by the naked human eye? The diameter of the pupil of the eye is about \(7 \mathrm{mm}\) when dark-adapted. Make reasonable estimates for the distance between the headlights and for the wavelength.

Parallel light of wavelength \(\lambda\) strikes a slit of width \(a\) at normal incidence. The light is viewed on a screen that is \(1.0 \mathrm{m}\) past the slits. In each case that follows, sketch the intensity on the screen as a function of \(x\), the distance from the center of the screen, for $0 \leq x \leq 10 \mathrm{cm}$ (a) \(\lambda=10 a\). (b) \(10 \lambda=a,\) (c) \(30 \lambda=a.\)
Light incident on a pair of slits produces an interference pattern on a screen \(2.50 \mathrm{m}\) from the slits. If the slit separation is $0.0150 \mathrm{cm}$ and the distance between adjacent bright fringes in the pattern is \(0.760 \mathrm{cm},\) what is the wavelength of the light? [Hint: Is the small-angle approximation justified?]
In a double-slit interference experiment, the wavelength is \(475 \mathrm{nm}\), the slit separation is \(0.120 \mathrm{mm},\) and the screen is $36.8 \mathrm{cm}$ away from the slits. What is the linear distance between adjacent maxima on the screen? [Hint: Assume the small-angle approximation is justified and then check the validity of your assumption once you know the value of the separation between adjacent maxima.] (tutorial: double slit 1 ).
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free