Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When the emf for the primary of a transformer is of amplitude $5.00 \mathrm{V},\( the secondary emf is \)10.0 \mathrm{V}$ in amplitude. What is the transformer turns ratio \(\left(N_{2} / N_{1}\right) ?\)

Short Answer

Expert verified
Answer: The transformer turns ratio (N2/N1) is 2.

Step by step solution

01

Understand the Transformer Turns Ratio Formula

The formula to relate the primary and secondary voltages of a transformer with its turns ratio is given by: \[ \frac{V_{2}}{V_{1}} = \frac{N_{2}}{N_{1}} \] where V1 is the primary voltage, V2 is the secondary voltage, N1 is the number of turns in the primary coil, and N2 is the number of turns in the secondary coil.
02

Plug in the given values

We are given V1 = 5.00 V and V2 = 10.0 V in the problem. We will plug these values into the formula: \[ \frac{10.0}{5.00} = \frac{N_{2}}{N_{1}} \]
03

Solve for N2/N1

Now, we will solve for the transformer turns ratio (N2/N1): \[ \frac{N_{2}}{N_{1}} = \frac{10.0}{5.00} = 2 \] So the transformer turns ratio N2/N1 is 2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The windings of an electromagnet have inductance \(L=8.0 \mathrm{H}\) and resistance \(R=2.0 \Omega . \quad A \quad 100.0-V \quad d c\) power supply is connected to the windings by closing switch \(S_{2} .\) (a) What is the current in the windings? (b) The electromagnet is to be shut off. Before disconnecting the power supply by opening switch \(S_{2},\) a shunt resistor with resistance \(20.0 \Omega\) is connected in parallel across the windings. Why is the shunt resistor needed? Why must it be connected before the power supply is disconnected? (c) What is the maximum power dissipated in the shunt resistor? The shunt resistor must be chosen so that it can handle at least this much power without damage. (d) When the power supply is disconnected by opening switch \(S_{2},\) how long does it take for the current in the windings to drop to \(0.10 \mathrm{A} ?\) (e) Would a larger shunt resistor dissipate the energy stored in the electromagnet faster? Explain.
The magnetic field between the poles of an electromagnet is \(2.6 \mathrm{T} .\) A coil of wire is placed in this region so that the field is parallel to the axis of the coil. The coil has electrical resistance \(25 \Omega,\) radius $1.8 \mathrm{cm},\( and length \)12.0 \mathrm{cm} .$ When the current supply to the electromagnet is shut off, the total charge that flows through the coil is \(9.0 \mathrm{mC} .\) How many turns are there in the coil?
Tim is using a cordless electric weed trimmer with a de motor to cut the long weeds in his back yard. The trimmer generates a back emf of \(18.00 \mathrm{V}\) when it is connected to an emf of \(24.0 \mathrm{V}\) de. The total electrical resistance of the electric motor is \(8.00 \Omega .\) (a) How much current flows through the motor when it is running smoothly? (b) Suddenly the string of the trimmer gets wrapped around a pole in the ground and the motor quits spinning. What is the current through the motor when there is no back emf? What should Tim do?
Verify that, in SI units, \(\Delta \Phi_{\mathrm{B}} / \Delta t\) can be measured in volts - in other words, that $1 \mathrm{Wb} / \mathrm{s}=1 \mathrm{V}$
In Section \(20.9,\) in order to find the energy stored in an inductor, we assumed that the current was increased from zero at a constant rate. In this problem, you will prove that the energy stored in an inductor is \(U_{\mathrm{L}}=\frac{1}{2} L I^{2}-\) that is, it only depends on the current \(I\) and not on the previous time dependence of the current. (a) If the current in the inductor increases from \(i\) to \(i+\Delta i\) in a very short time \(\Delta t,\) show that the energy added to the inductor is $$\Delta U=L i \Delta i$$ [Hint: Start with \(\Delta U=P \Delta t .]\) (b) Show that, on a graph of \(L i\) versus \(i,\) for any small current interval \(\Delta i,\) the energy added to the inductor can be interpreted as the area under the graph for that interval.(c) Now show that the energy stored in the inductor when a current \(I\) flows is \(U=\frac{1}{2} L I^{2}\)
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free