Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The primary coil of a transformer has 250 turns; the secondary coil has 1000 turns. An alternating current is sent through the primary coil. The emf in the primary is of amplitude \(16 \mathrm{V}\). What is the emf amplitude in the secondary? (tutorial: transformer)

Short Answer

Expert verified
Answer: 64V

Step by step solution

01

Identify the transformer equation.

The transformer equation is given by: \(\frac{V_p}{V_s} = \frac{N_p}{N_s}\) where \(V_p\) is the emf amplitude in the primary coil, \(V_s\) is the emf amplitude in the secondary coil, \(N_p\) is the number of turns in the primary coil, and \(N_s\) is the number of turns in the secondary coil.
02

Plug in the given values.

We are given \(N_p = 250\) turns, \(N_s = 1000\) turns, and \(V_p = 16 \mathrm{V}\). Substituting these values into the transformer equation, we get: \(\frac{16}{V_s} = \frac{250}{1000}\)
03

Solve for \(V_s\).

To solve for \(V_s\), we can cross-multiply and simplify: \(16 \times 1000 = V_s \times 250\) \(16000 = 250V_s\) Now, divide both sides by 250: \(V_s = \frac{16000}{250}\)
04

Calculate the emf amplitude in the secondary coil.

After the division, we get the emf amplitude in the secondary coil: \(V_s = 64 \mathrm{V}\) Therefore, the emf amplitude in the secondary coil is \(64 \mathrm{V}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The outside of an ideal solenoid $\left(N_{1} \text { turns, length } L\right.\( radius \)r)\( is wound with a coil of wire with \)N_{2}$ turns. (a) What is the mutual inductance? (b) If the current in the solenoid is changing at a rate \(\Delta I_{1} / \Delta t,\) what is the magnitude of the induced emf in the coil?
A \(0.67 \mathrm{mH}\) inductor and a \(130 \Omega\) resistor are placed in series with a \(24 \mathrm{V}\) battery. (a) How long will it take for the current to reach \(67 \%\) of its maximum value? (b) What is the maximum energy stored in the inductor? (c) How long will it take for the energy stored in the inductor to reach \(67 \%\) of its maximum value? Comment on how this compares with the answer in part (a).
A transformer with a primary coil of 1000 turns is used to step up the standard \(170-\mathrm{V}\) amplitude line voltage to a \(220-\mathrm{V}\) amplitude. How many turns are required in the secondary coil?
A 100 -turn coil with a radius of \(10.0 \mathrm{cm}\) is mounted so the coil's axis can be oriented in any horizontal direction. Initially the axis is oriented so the magnetic flux from Earth's field is maximized. If the coil's axis is rotated through \(90.0^{\circ}\) in \(0.080 \mathrm{s},\) an emf of $0.687 \mathrm{mV}$ is induced in the coil. (a) What is the magnitude of the horizontal component of Earth's magnetic field at this location? (b) If the coil is moved to another place on Earth and the measurement is repeated, will the result be the same?
In Section \(20.9,\) in order to find the energy stored in an inductor, we assumed that the current was increased from zero at a constant rate. In this problem, you will prove that the energy stored in an inductor is \(U_{\mathrm{L}}=\frac{1}{2} L I^{2}-\) that is, it only depends on the current \(I\) and not on the previous time dependence of the current. (a) If the current in the inductor increases from \(i\) to \(i+\Delta i\) in a very short time \(\Delta t,\) show that the energy added to the inductor is $$\Delta U=L i \Delta i$$ [Hint: Start with \(\Delta U=P \Delta t .]\) (b) Show that, on a graph of \(L i\) versus \(i,\) for any small current interval \(\Delta i,\) the energy added to the inductor can be interpreted as the area under the graph for that interval.(c) Now show that the energy stored in the inductor when a current \(I\) flows is \(U=\frac{1}{2} L I^{2}\)
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free