Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A doorbell uses a transformer to deliver an amplitude of \(8.5 \mathrm{V}\) when it is connected to a \(170-\mathrm{V}\) amplitude line. If there are 50 turns on the secondary, (a) what is the turns ratio? (b) How many turns does the primary have?

Short Answer

Expert verified
Answer: The turns ratio is approximately 20, and the primary coil has approximately 1000 turns.

Step by step solution

01

Identify the given information

We are given: - \(V_p = 170 \mathrm{V}\) (voltage of the primary coil) - \(V_s = 8.5 \mathrm{V}\) (voltage of the secondary coil) - \(N_s = 50\) (number of turns in the secondary coil)
02

Calculate the turns ratio

Using the formula for the turns ratio: $$\frac{N_p}{N_s}=\frac{V_p}{V_s}$$ Plug in the given values: $$\frac{N_p}{50}=\frac{170}{8.5}$$ Now, we can solve for the turns ratio, which is the ratio of \(N_p\) to \(N_s\): $$\frac{N_p}{50}=\frac{170}{8.5} \Rightarrow \frac{N_p}{50} \approx 20$$ So, the turns ratio is approximately 20.
03

Find the number of turns in the primary coil

Now that we have the turns ratio, we can find how many turns are in the primary coil. We know the following: $$\frac{N_p}{50} \approx 20$$ Now, we can solve for \(N_p\): $$N_p \approx 20 \times 50 = 1000$$ Therefore, the primary coil has approximately 1000 turns.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two solenoids, of \(N_{1}\) and \(N_{2}\) turns respectively, are wound on the same form. They have the same length \(L\) and radius \(r\) (a) What is the mutual inductance of these two solenoids? (b) If an ac current $$I_{1}(t)=I_{\mathrm{m}} \sin \omega t$$ flows in solenoid $$1\left(N_{1} \text { turns }\right)$$ write an expression for the total flux through solenoid \(2 .\) (c) What is the maximum induced emf in solenoid \(2 ?[\text { Hint: Refer to Eq. }(20-7) .]\)
An airplane is flying due north at \(180 \mathrm{m} / \mathrm{s}\). Earth's magnetic field has a northward component of \(0.30 \mathrm{mT}\) and an upward component of \(0.38 \mathrm{mT}\). (a) If the wingspan (distance between the wingtips) is \(46 \mathrm{m},\) what is the motional emf between the wingtips? (b) Which wingtip is positively charged?
The component of the external magnetic field along the central axis of a 50 -turn coil of radius \(5.0 \mathrm{cm}\) increases from 0 to 1.8 T in 3.6 s. (a) If the resistance of the coil is \(2.8 \Omega,\) what is the magnitude of the induced current in the coil? (b) What is the direction of the current if the axial component of the field points away from the viewer?
A 2 -m-long copper pipe is held vertically. When a marble is dropped down the pipe, it falls through in about 0.7 s. A magnet of similar size and shape takes much longer to fall through the pipe. (a) As the magnet is falling through the pipe with its north pole below its south pole, what direction do currents flow around the pipe above the magnet? Below the magnet (CW or CCW as viewed from the top)? (b) Sketch a graph of the speed of the magnet as a function of time. [Hint: What would the graph look like for a marble falling through honey?]
Compare the electric energy that can be stored in a capacitor to the magnetic energy that can be stored in an inductor of the same size (that is, the same volume). For the capacitor, assume that air is between the plates; the maximum electric field is then the breakdown strength of air, about $3 \mathrm{MV} / \mathrm{m} .$ The maximum magnetic field attainable in an ordinary solenoid with an air core is on the order of \(10 \mathrm{T}\)
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free