Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If a car traveling at \(28 \mathrm{m} / \mathrm{s}\) is brought to a full stop in \(4.0 \mathrm{s}\) after the brakes are applied, find the average acceleration during braking.

Short Answer

Expert verified
Answer: The average acceleration during braking is -7 m/s².

Step by step solution

01

Identify the given values

The given values are: Initial velocity (vi) = 28 m/s Final velocity (vf) = 0 m/s (since the car comes to a full stop) Time taken (t) = 4.0 s
02

Write down the formula for average acceleration

The formula for average acceleration (a) is: a = (vf - vi) / t
03

Substitute the given values into the formula and solve

We plug in the given values into the formula: a = (0 - 28) / 4.0
04

Calculate the average acceleration

Performing the calculations: a = -28 / 4.0 a = -7 \mathrm{m/s^2}
05

Final Answer

The average acceleration during braking is -7 m/s². Note that the negative sign indicates that the car is decelerating, or slowing down.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

please assume the free-fall acceleration \(g=9.80 \mathrm{m} / \mathrm{s}^{2}\) unless a more precise value is given in the problem statement. Ignore air resistance. A penny is dropped from the observation deck of the Empire State building (369 m above ground). With what velocity does it strike the ground?
Jason drives due west with a speed of \(35.0 \mathrm{mi} / \mathrm{h}\) for 30.0 min, then continues in the same direction with a speed of $60.0 \mathrm{mi} / \mathrm{h}\( for \)2.00 \mathrm{h},$ then drives farther west at \(25.0 \mathrm{mi} / \mathrm{h}\) for \(10.0 \mathrm{min} .\) What is Jason's average velocity for the entire trip?
A rubber ball is attached to a paddle by a rubber band. The ball is initially moving away from the paddle with a speed of \(4.0 \mathrm{m} / \mathrm{s} .\) After \(0.25 \mathrm{s}\), the ball is moving toward the paddle with a speed of \(3.0 \mathrm{m} / \mathrm{s} .\) What is the average acceleration of the ball during that 0.25 s? Give magnitude and direction.
An \(1100-\mathrm{kg}\) airplane starts from rest; \(8.0 \mathrm{s}\) later it reaches its takeoff speed of \(35 \mathrm{m} / \mathrm{s} .\) What is the average acceleration of the airplane during this time?
To pass a physical fitness test, Massimo must run \(1000 \mathrm{m}\) at an average rate of \(4.0 \mathrm{m} / \mathrm{s} .\) He runs the first $900 \mathrm{m}\( in \)250 \mathrm{s} .$ Is it possible for Massimo to pass the test? If so, how fast must he run the last 100 m to pass the test? Explain.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free