Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Rita Jeptoo of Kenya was the first female finisher in the 110 th Boston Marathon. She ran the first \(10.0 \mathrm{km}\) in a time of $0.5689 \mathrm{h}$. Assume the race course to be along a straight line. (a) What was her average speed during the first \(10.0 \mathrm{km}\) segment of the race? (b) She completed the entire race, a distance of \(42.195 \mathrm{km},\) in a time of 2.3939 h. What was her average speed for the race?

Short Answer

Expert verified
Answer: Rita's average speed during the first 10 km segment was approximately 17.58 km/h, and her average speed for the entire race was approximately 17.63 km/h.

Step by step solution

01

(a) Calculate the average speed during the first 10.0km segment of the race

Given that Rita ran the first 10.0km in a time of 0.5689 h, we can calculate her average speed as: Average speed = Distance / Time Average speed = 10.0 km / 0.5689 h
02

(a) Calculate the average speed

Now, we can compute the average speed during the first 10km segment: Average speed = 10.0 km / 0.5689 h ≈ 17.58 km/h
03

(b) Calculate the average speed for the whole race

Given that Rita completed the entire race (42.195 km) in a time of 2.3939 h, we can calculate her average speed again using the same formula: Average speed = Distance / Time Average speed = 42.195 km / 2.3939 h
04

(b) Calculate the average speed

Now, we can compute the average speed for the whole race: Average speed = 42.195 km / 2.3939 h ≈ 17.63 km/h Thus, Rita's average speed during the first 10km segment of the race was approximately 17.58 km/h, and her average speed for the entire race was approximately 17.63 km/h.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An \(1100-\mathrm{kg}\) airplane starts from rest; \(8.0 \mathrm{s}\) later it reaches its takeoff speed of \(35 \mathrm{m} / \mathrm{s} .\) What is the average acceleration of the airplane during this time?
In the problems, please assume the free-fall acceleration $g=9.80 \mathrm{m} / \mathrm{s}^{2}$ unless a more precise value is given in the problem statement. Ignore air resistance. A stone is thrown vertically downward from the roof of a building. It passes a window \(16.0 \mathrm{m}\) below the roof with a speed of $25.0 \mathrm{m} / \mathrm{s} .\( It lands on the ground \)3.00 \mathrm{s}$ after it was thrown. What was (a) the initial velocity of the stone and (b) how tall is the building?
A car is speeding up and has an instantaneous velocity of $1.0 \mathrm{m} / \mathrm{s}\( in the \)+x\( -direction when a stopwatch reads \)10.0 \mathrm{s} .$ It has a constant acceleration of \(2.0 \mathrm{m} / \mathrm{s}^{2}\) in the \(+x\) -direction. (a) What change in speed occurs between \(t=10.0 \mathrm{s}\) and \(t=12.0 \mathrm{s} ?(\mathrm{b})\) What is the speed when the stopwatch reads \(12.0 \mathrm{s} ?\)
please assume the free-fall acceleration \(g=9.80 \mathrm{m} / \mathrm{s}^{2}\) unless a more precise value is given in the problem statement. Ignore air resistance. A student, looking toward his fourth-floor dormitory window, sees a flowerpot with nasturtiums (originally on a window sill above) pass his \(2.0-\mathrm{m}\) high window in 0.093 s. The distance between floors in the dormitory is $4.0 \mathrm{m} .$ From a window on which floor did the flowerpot fall?
please assume the free-fall acceleration \(g=9.80 \mathrm{m} / \mathrm{s}^{2}\) unless a more precise value is given in the problem statement. Ignore air resistance. You drop a stone into a deep well and hear it hit the bottom 3.20 s later. This is the time it takes for the stone to fall to the bottom of the well, plus the time it takes for the sound of the stone hitting the bottom to reach you. Sound travels about \(343 \mathrm{m} / \mathrm{s}\) in air. How deep is the well?
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free