Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Draw some electric field lines and a few equipotential surfaces outside a negatively charged hollow conducting sphere. What shape are the equipotential surfaces?

Short Answer

Expert verified
Answer: The equipotential surfaces outside a negatively charged hollow conducting sphere are spherical in shape and centered on the sphere itself.

Step by step solution

01

Draw the sphere and its electric field lines

Begin by drawing a negatively charged hollow conducting sphere. Electric field lines around the sphere should point inward, towards the negatively charged surface of the sphere. The lines should be evenly spaced around the sphere.
02

Determine the direction of equipotential surfaces

Recall that equipotential surfaces are always perpendicular to the electric field lines. Therefore, equipotential surfaces around the negatively charged sphere will be centered on the sphere and have a spherical shape.
03

Draw equipotential surfaces

Start with one equipotential surface close to the sphere, with a spherical shape centered on the sphere. As you move further away from the sphere, draw additional equipotential surfaces with a larger radius than the previous surface. These surfaces should also maintain a spherical shape and be centered on the sphere.
04

Analyze the shape of the equipotential surfaces

As we can see from steps 2 and 3, the equipotential surfaces around the negatively charged hollow conducting sphere have a spherical shape, centered on the negatively charged sphere. In conclusion, the equipotential surfaces outside a negatively charged hollow conducting sphere are spherical in shape and centered on the sphere itself.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A parallel plate capacitor is charged by connecting it to a \(12-V\) battery. The battery is then disconnected from the capacitor. The plates are then pulled apart so the spacing between the plates is increased. What is the effect (a) on the electric field between the plates? (b) on the potential difference between the plates?
Two parallel plates are \(4.0 \mathrm{cm}\) apart. The bottom plate is charged positively and the top plate is charged negatively, producing a uniform electric field of \(5.0 \times 10^{4} \mathrm{N} / \mathrm{C}\) in the region between the plates. What is the time required for an electron, which starts at rest at the upper plate, to reach the lower plate? (Assume a vacuum exists between the plates.)
A parallel plate capacitor has a charge of \(0.020 \mu \mathrm{C}\) on each plate with a potential difference of \(240 \mathrm{V}\) The parallel plates are separated by \(0.40 \mathrm{mm}\) of bakelite. What is the capacitance of this capacitor?
Before a lightning strike can occur, the breakdown limit for damp air must be reached. If this occurs for an electric field of $3.33 \times 10^{5} \mathrm{V} / \mathrm{m},$ what is the maximum possible height above the Earth for the bottom of a thundercloud, which is at a potential $1.00 \times 10^{8} \mathrm{V}$ below Earth's surface potential, if there is to be a lightning strike?
The potential difference across a cell membrane from outside to inside is initially at \(-90 \mathrm{mV}\) (when in its resting phase). When a stimulus is applied, Na" ions are allowed to move into the cell such that the potential changes to \(+20 \mathrm{mV}\) for a short amount of time. (a) If the membrane capacitance per unit area is $1 \mu \mathrm{F} / \mathrm{cm}^{2},\( how much charge moves through a membrane of area \)0.05 \mathrm{cm}^{2} ?\( (b) The charge on \)\mathrm{Na}^{+}\( is \)+e$ How many ions move through the membrane?
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free