Chapter 14: Problem 57
Chapter 14: Problem 57
All the tools & learning materials you need for study success - in one app.
Get started for freeHow much internal energy is generated when a \(20.0-\mathrm{g}\) lead bullet, traveling at \(7.00 \times 10^{2} \mathrm{m} / \mathrm{s},\) comes to a stop as it strikes a metal plate?
Consider the leaf of Problem \(70 .\) Assume that the top surface of the leaf absorbs \(70.0 \%\) of \(9.00 \times 10^{2} \mathrm{W} / \mathrm{m}^{2}\) of radiant energy, while the bottom surface absorbs all of the radiant energy incident on it due to its surroundings at \(25.0^{\circ} \mathrm{C} .\) (a) If the only method of heat loss for the leaf were thermal radiation, what would be the temperature of the leaf? (Assume that the leaf radiates like a blackbody.) (b) If the leaf is to remain at a temperature of \(25.0^{\circ} \mathrm{C}\) how much power per unit area must be lost by other methods such as transpiration (evaporative heat loss)?
A student wants to lose some weight. He knows that rigorous aerobic activity uses about \(700 \mathrm{kcal} / \mathrm{h}(2900 \mathrm{kJ} / \mathrm{h})\) and that it takes about 2000 kcal per day \((8400 \mathrm{kJ})\) just to support necessary biological functions, including keeping the body warm. He decides to burn calories faster simply by sitting naked in a \(16^{\circ} \mathrm{C}\) room and letting his body radiate calories away. His body has a surface area of about \(1.7 \mathrm{m}^{2}\) and his skin temperature is \(35^{\circ} \mathrm{C} .\) Assuming an emissivity of \(1.0,\) at what rate (in \(\mathrm{kcal} / \mathrm{h}\) ) will this student "burn" calories?
What do you think about this solution?
We value your feedback to improve our textbook solutions.