Chapter 14: Problem 34
Chapter 14: Problem 34
All the tools & learning materials you need for study success - in one app.
Get started for freeA window whose glass has \(\kappa=1.0 \mathrm{W} /(\mathrm{m} \cdot \mathrm{K})\) is covered completely with a sheet of foam of the same thickness as the glass, but with \(\kappa=0.025 \mathrm{W} /(\mathrm{m} \cdot \mathrm{K}) .\) How is the rate at which heat is conducted through the window changed by the addition of the foam?
Consider the leaf of Problem \(70 .\) Assume that the top surface of the leaf absorbs \(70.0 \%\) of \(9.00 \times 10^{2} \mathrm{W} / \mathrm{m}^{2}\) of radiant energy, while the bottom surface absorbs all of the radiant energy incident on it due to its surroundings at \(25.0^{\circ} \mathrm{C} .\) (a) If the only method of heat loss for the leaf were thermal radiation, what would be the temperature of the leaf? (Assume that the leaf radiates like a blackbody.) (b) If the leaf is to remain at a temperature of \(25.0^{\circ} \mathrm{C}\) how much power per unit area must be lost by other methods such as transpiration (evaporative heat loss)?
What do you think about this solution?
We value your feedback to improve our textbook solutions.