Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A thermometer containing \(0.10 \mathrm{g}\) of mercury is cooled from \(15.0^{\circ} \mathrm{C}\) to \(8.5^{\circ} \mathrm{C} .\) How much energy left the mercury in this process?

Short Answer

Expert verified
Answer: Approximately 0.091 Joules of energy leaves the mercury.

Step by step solution

01

Find the change in temperature

ΔT = T_final - T_initial ΔT = 8.5°C - 15.0°C ΔT = -6.5°C The negative sign indicates that the temperature decreased, which means that the mercury lost energy.
02

Find the specific heat capacity of mercury

The specific heat capacity of mercury (\(c\)) is a known value, which is approximately \(c = 140 \frac{\mathrm{J}}{\mathrm{kg}\cdot \mathrm{K}}\). Since the mass of mercury is given in grams, we need to convert the specific heat capacity to \(\frac{\mathrm{J}}{\mathrm{g} \cdot \mathrm{K}}\) by dividing by 1000: \(c = 0.14 \frac{\mathrm{J}}{\mathrm{g} \cdot \mathrm{K}}\)
03

Calculate the heat transfer (energy left)

Now we have all the values needed to solve for the heat transfer (\(Q\)) using the formula \(Q = mcΔT\): \(Q = (0.10 \thinspace \mathrm{g}) \cdot (0.14 \thinspace \frac{\mathrm{J}}{\mathrm{g} \cdot \mathrm{K}}) \cdot (-6.5 \thinspace \mathrm{K})\) \(Q = -0.091 \thinspace \mathrm{J}\) Since the value of \(Q\) is negative, it confirms that the energy left the mercury. In this process, approximately 0.091 Joules of energy left the mercury as it cooled from 15°C to 8.5°C.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a physics lab, a student accidentally drops a \(25.0-\mathrm{g}\) brass washer into an open dewar of liquid nitrogen at 77.2 K. How much liquid nitrogen boils away as the washer cools from \(293 \mathrm{K}\) to $77.2 \mathrm{K} ?\( The latent heat of vaporization for nitrogen is \)199.1 \mathrm{kJ} / \mathrm{kg}$.
A stainless steel saucepan, with a base that is made of \(0.350-\mathrm{cm}-\) thick steel \([\kappa=46.0 \mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]\) fused to a \(0.150-\mathrm{cm}\) thickness of copper $[\kappa=401 \mathrm{W} /(\mathrm{m} \cdot \mathrm{K})],\( sits on a ceramic heating element at \)104.00^{\circ} \mathrm{C} .\( The diameter of the pan is \)18.0 \mathrm{cm}$ and it contains boiling water at \(100.00^{\circ} \mathrm{C} .\) (a) If the copper-clad bottom is touching the heat source, what is the temperature at the copper-steel interface? (b) At what rate will the water evaporate from the pan?
One end of a cylindrical iron rod of length \(1.00 \mathrm{m}\) and of radius \(1.30 \mathrm{cm}\) is placed in the blacksmith's fire and reaches a temperature of \(327^{\circ} \mathrm{C} .\) If the other end of the rod is being held in your hand \(\left(37^{\circ} \mathrm{C}\right),\) what is the rate of heat flow along the rod? The thermal conductivity of yal iron varies with temperature, but an average between the two temperatures is $67.5 \mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$. (tutorial: conduction)
The amount of heat generated during the contraction of muscle in an amphibian's leg is given by $$Q=0.544 \mathrm{mJ}+(1.46 \mathrm{mJ} / \mathrm{cm}) \Delta x$$ where \(\Delta x\) is the length shortened. If a muscle of length \(3.0 \mathrm{cm}\) and mass \(0.10 \mathrm{g}\) is shortened by $1.5 \mathrm{cm}$ during a contraction, what is the temperature rise? Assume that the specific heat of muscle is $4.186 \mathrm{J} /\left(\mathrm{g} \cdot^{\circ} \mathrm{C}\right)$.
Compute the heat of fusion of a substance from these data: \(31.15 \mathrm{kJ}\) will change \(0.500 \mathrm{kg}\) of the solid at \(21^{\circ} \mathrm{C}\) to liquid at \(327^{\circ} \mathrm{C},\) the melting point. The specific heat of the solid is \(0.129 \mathrm{kJ} /(\mathrm{kg} \cdot \mathrm{K})\).
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free