Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An \(83-\mathrm{kg}\) man eats a banana of energy content $1.00 \times 10^{2} \mathrm{kcal} .$ If all of the energy from the banana is converted into kinetic energy of the man, how fast is he moving, assuming he starts from rest?

Short Answer

Expert verified
Answer: Approximately 31.43 m/s.

Step by step solution

01

Write down the given information

Mass of the man (m) is given as 83 kg. Energy content of the banana (E) is given as 1.00 × 10^2 kcal.
02

Convert energy content from kcal to Joules

To work with SI units, we need to convert the energy content of the banana from kcal to Joules (J). 1 kcal = 4184 J So, E = 1.00 × 10^2 kcal × 4184 J/kcal = 4.184 × 10^5 J
03

Write down the formula for kinetic energy

The formula for kinetic energy (K) when an object starts from rest is given by: K = 0.5 * m * v^2 Where m is the mass and v is the final speed.
04

Set the energy content equal to the kinetic energy and solve for speed (v)

According to our problem, all the energy from the banana will be converted into kinetic energy of the man. 4.184 × 10^5 J = 0.5 * 83 kg * v^2 Now, we need to solve for v: v^2 = (4.184 × 10^5 J) / (0.5 * 83 kg) v^2 ≈ 10096.38 v = sqrt(10096.38) v ≈ 31.43 m/s
05

Conclusion

If all the energy from the banana is converted into kinetic energy of the man, he will be moving at a speed of approximately 31.43 m/s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A metal rod with a diameter of \(2.30 \mathrm{cm}\) and length of $1.10 \mathrm{m}\( has one end immersed in ice at \)32.0^{\circ} \mathrm{F}$ and the other end in boiling water at \(212^{\circ} \mathrm{F}\). If the ice melts at a rate of 1.32 g every 175 s, what is the thermal conductivity of this metal? Identify the metal. Assume there is no heat lost to the surrounding air.
A stainless steel saucepan, with a base that is made of \(0.350-\mathrm{cm}-\) thick steel \([\kappa=46.0 \mathrm{W} /(\mathrm{m} \cdot \mathrm{K})]\) fused to a \(0.150-\mathrm{cm}\) thickness of copper $[\kappa=401 \mathrm{W} /(\mathrm{m} \cdot \mathrm{K})],\( sits on a ceramic heating element at \)104.00^{\circ} \mathrm{C} .\( The diameter of the pan is \)18.0 \mathrm{cm}$ and it contains boiling water at \(100.00^{\circ} \mathrm{C} .\) (a) If the copper-clad bottom is touching the heat source, what is the temperature at the copper-steel interface? (b) At what rate will the water evaporate from the pan?

The water passing over Victoria Falls, located along the Zambezi River on the border of Zimbabwe and Zambia, drops about \(105 \mathrm{m} .\) How much internal energy is produced per kilogram as a result of the fall?

A student wants to lose some weight. He knows that rigorous aerobic activity uses about \(700 \mathrm{kcal} / \mathrm{h}(2900 \mathrm{kJ} / \mathrm{h})\) and that it takes about 2000 kcal per day \((8400 \mathrm{kJ})\) just to support necessary biological functions, including keeping the body warm. He decides to burn calories faster simply by sitting naked in a \(16^{\circ} \mathrm{C}\) room and letting his body radiate calories away. His body has a surface area of about \(1.7 \mathrm{m}^{2}\) and his skin temperature is \(35^{\circ} \mathrm{C} .\) Assuming an emissivity of \(1.0,\) at what rate (in \(\mathrm{kcal} / \mathrm{h}\) ) will this student "burn" calories?

One end of a cylindrical iron rod of length \(1.00 \mathrm{m}\) and of radius \(1.30 \mathrm{cm}\) is placed in the blacksmith's fire and reaches a temperature of \(327^{\circ} \mathrm{C} .\) If the other end of the rod is being held in your hand \(\left(37^{\circ} \mathrm{C}\right),\) what is the rate of heat flow along the rod? The thermal conductivity of yal iron varies with temperature, but an average between the two temperatures is $67.5 \mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$. (tutorial: conduction)
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free