Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the speed of sound in mercury, which has a bulk modulus of $2.8 \times 10^{10} \mathrm{Pa}\( and a density of \)1.36 \times\( \)10^{4} \mathrm{kg} / \mathrm{m}^{3}.$

Short Answer

Expert verified
Answer: The speed of sound in mercury is approximately \(1443.29 \mathrm{m/s}\).

Step by step solution

01

Write down the given information

We are given the following information: Bulk modulus, \(B = 2.8 \times 10^{10} \mathrm{Pa}\) Density, \(ρ = 1.36 \times 10^{4} \mathrm{kg/m}^{3}\)
02

Use the formula for the speed of sound

We will use the formula for calculating the speed of sound in a material: \(v = \sqrt{\dfrac{B}{ρ}}\)
03

Substitute the values into the formula

Substitute the values of the bulk modulus and the density into the formula: \(v = \sqrt{\dfrac{2.8 \times 10^{10} \mathrm{Pa}}{1.36 \times 10^{4} \mathrm{kg/m}^{3}}}\)
04

Calculate the speed of sound

Now, perform the calculations to find the speed of sound in mercury: \(v = \sqrt{\dfrac{2.8 \times 10^{10}}{1.36 \times 10^{4}}} \mathrm{m/s}\) \(v \approx 1443.29 \mathrm{m/s}\) The speed of sound in mercury is approximately \(1443.29 \mathrm{m/s}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An intensity level change of \(+1.00 \mathrm{dB}\) corresponds to what percentage change in intensity?
Doppler ultrasound is used to measure the speed of blood flow (see Problem 42). The reflected sound interferes with the emitted sound, producing beats. If the speed of red blood cells is \(0.10 \mathrm{m} / \mathrm{s},\) the ultrasound frequency used is \(5.0 \mathrm{MHz},\) and the speed of sound in blood is \(1570 \mathrm{m} / \mathrm{s},\) what is the beat frequency?
A piano tuner sounds two strings simultancously. One has been previously tuned to vibrate at \(293.0 \mathrm{Hz}\). The tuner hears 3.0 beats per second. The tuner increases the tension on the as-yet untuned string, and now when they are played together the beat frequency is \(1.0 \mathrm{s}^{-1} .\) (a) What was the original frequency of the untuned string? (b) By what percentage did the tuner increase the tension on that string?
A periodic wave is composed of the superposition of three sine waves whose frequencies are \(36,60,\) and 84 Hz. The speed of the wave is 180 m/s. What is the wavelength of the wave? [Hint: The \(36 \mathrm{Hz}\) is not necessarily the fundamental frequency.]
In this problem, you will estimate the smallest kinetic energy of vibration that the human ear can detect. Suppose that a harmonic sound wave at the threshold of hearing $\left(I=1.0 \times 10^{-12} \mathrm{W} / \mathrm{m}^{2}\right)\( is incident on the eardrum. The speed of sound is \)340 \mathrm{m} / \mathrm{s}\( and the density of air is \)1.3 \mathrm{kg} / \mathrm{m}^{3} .$ (a) What is the maximum speed of an element of air in the sound wave? [Hint: See Eq. \((10-21) .]\) (b) Assume the eardrum vibrates with displacement \(s_{0}\) at angular frequency \(\omega ;\) its maximum speed is then equal to the maximum speed of an air element. The mass of the eardrum is approximately \(0.1 \mathrm{g} .\) What is the average kinetic energy of the eardrum? (c) The average kinetic energy of the eardrum due to collisions with air molecules in the absence of a sound wave is about \(10^{-20} \mathrm{J}\) Compare your answer with (b) and discuss.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free