Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A periodic wave is composed of the superposition of three sine waves whose frequencies are \(36,60,\) and 84 Hz. The speed of the wave is 180 m/s. What is the wavelength of the wave? [Hint: The \(36 \mathrm{Hz}\) is not necessarily the fundamental frequency.]

Short Answer

Expert verified
Answer: The wavelength of the periodic wave is 15 meters.

Step by step solution

01

Find the Fundamental Frequency

Note that the three given frequencies are 36, 60, and 84 Hz. We want to find the fundamental frequency, which is the lowest frequency that divides all of these frequencies. Let's find the greatest common divisor (GCD) of these three numbers, as it corresponds to the fundamental frequency: GCD(36, 60, 84) = 12 Hz So, the fundamental frequency is 12 Hz.
02

Calculate the Wavelength

We can now use the wave speed formula to calculate the wavelength of the wave. The wave speed formula is given by: speed = frequency × wavelength We know the wave speed is 180 m/s, and we just found the fundamental frequency to be 12 Hz. We can rearrange the formula to find the wavelength: wavelength = speed / frequency Now, we can plug in the values: wavelength = 180 m/s / 12 Hz Wavelength = 15 meters The wavelength of the wave is 15 meters.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A source of sound waves of frequency \(1.0 \mathrm{kHz}\) is stationary. An observer is traveling at 0.50 times the speed of sound. (a) What is the observed frequency if the observer moves toward the source? (b) Repeat if the observer moves away from the source instead.

Analysis of the periodic sound wave produced by a violin's G string includes three frequencies: \(392,588,\) and \(980 \mathrm{Hz} .\) What is the fundamental frequency? [Hint: The wave on the string is the superposition of several different standing wave patterns.]

An ambulance traveling at \(44 \mathrm{m} / \mathrm{s}\) approaches a car heading in the same direction at a speed of \(28 \mathrm{m} / \mathrm{s}\). The ambulance driver has a siren sounding at \(550 \mathrm{Hz}\). At what frequency does the driver of the car hear the siren?
At the race track, one race car starts its engine with a resulting intensity level of \(98.0 \mathrm{dB}\) at point \(P .\) Then seven more cars start their engines. If the other seven cars each produce the same intensity level at point \(P\) as the first car, what is the new intensity level with all eight cars running?
A bat emits chirping sounds of frequency \(82.0 \mathrm{kHz}\) while hunting for moths to eat. If the bat is flying toward the moth at a speed of $4.40 \mathrm{m} / \mathrm{s}\( and the moth is flying away from the bat at \)1.20 \mathrm{m} / \mathrm{s},$ what is the frequency of the sound wave reflected from the moth as observed by the bat? Assume it is a cool night with a temperature of \(10.0^{\circ} \mathrm{C} .\) [Hint: There are two Doppler shifts. Think of the moth as a receiver, which then becomes a source as it "retransmits" the reflected wave. \(]\)
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free