Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A clock has a pendulum that performs one full swing every \(1.0 \mathrm{s}(\) back and forth). The object at the end of the pendulum weighs $10.0 \mathrm{N}$. What is the length of the pendulum?

Short Answer

Expert verified
Answer: The length of the pendulum is approximately 0.248 m.

Step by step solution

01

Identify the given values

We are given the period of the pendulum \(T = 1.0 \mathrm{s}\) and the weight of the object at the end \(W = 10.0 \mathrm{N}\).
02

Recall the formula for the period of a simple pendulum

The formula for the period of a simple pendulum is: \(T = 2\pi\sqrt{\frac{l}{g}}\), where \(T\) is the period, \(l\) is the length, and \(g\) is the acceleration due to gravity.
03

Solve the formula for the length

We need to find the length of the pendulum, so we need to rearrange the formula to solve for \(l\). By squaring both sides of the equation and isolating \(l\), we get: \(l = \frac{gT^2}{4\pi^2}\).
04

Calculate the acceleration due to gravity

Knowing that the weight of the object is \(10.0 \mathrm{N}\), we can use Newton's second law to find the mass of the object: \(W = mg\) where \(W\) is the weight, \(m\) is the mass, and \(g\) is the acceleration due to gravity. In this case, \(g\) is approximately \(9.81 \mathrm{m/s^2}\).
05

Solve for the length

Now we can plug the values of \(T\) and \(g\) into the formula for the length and find the length of the pendulum: \(l = \frac{(9.81 \mathrm{m/s^2})(1.0 \mathrm{s})^2}{4\pi^2} \approx 0.248 \mathrm{m}\).
06

Provide the answer

The length of the pendulum is approximately \(0.248 \mathrm{m}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free